• Title/Summary/Keyword: True Stress

Search Result 232, Processing Time 0.034 seconds

Optimal Allocation of Test Items in an Accelerated Life Test under Model Uncertainty

  • Choi, Young-Sik;Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.14 no.2
    • /
    • pp.91-97
    • /
    • 1988
  • In accelerated life testing, a relationship is usually assumed between the stress and a parameter of the lifetime distribution. However, the true relationship is not usually known, and therefore, the experimenter may wish to provide protections against the likely departures from the assumed relationship. This paper considers an accelerated life test in which two stress levels are involved, and the lifetime of each test item at a stress level is assumed to have an independent, identical, exponential distribution. For the case where a first order relationship is assumed while the true one is quadratic, a procedure is developed for allocating test items to stress levels such that the bias and/or the variance of the estimated(log-transformed) mean lifetime at the use condition is minimized.

  • PDF

Optimal Design of Accelerated Life Tests under Model Uncertainty (불확정 모형하에서 가속수명시험의 최적 설계)

  • 서순근;하천수;김갑석
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.3
    • /
    • pp.49-65
    • /
    • 2001
  • This paper presents new compromise ALT plan which is applied to situations that true relationship between stress and parameters is not known exactly. The assumed failure distribution of this study is one of location-scale family, i. e., exponential, Weibull, and lognormal distributions which have been ones of the popular choices of failure distributions. The method of applying the stress is constant, and the censoring mechanism is Type I censoring. Compared with existing compromise plans under true simple linear model in terms of statistical efficiency, the efficiency of new compromise plan is better than the corresponding other compromise ones in most cases. For case when true model is quadratic, this plan can be used without any severe loss in statistical efficiency. The proposed new compromise ALT plan is illustrated with a numerical example and sensitivity analyses are conducted to study effects of pre-estimates of design parameters.

  • PDF

Development of Stress-Modified Fracture Strain Criterion for Ductile Fracture of API X65 Steel (API X65 강의 연성파괴 해석을 위한 삼축응력 영향을 고려한 파괴변형률 기준 개발)

  • Oh Chang-Kyun;Kim Yun-Jae;Park Jin-Moo;Baek Jong-Hyun;Kim Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1621-1628
    • /
    • 2005
  • This paper presents a stress-modified fracture strain for API X65 steel used for gas pipeline, as a function of stress triaxiality. To determine the stress-modified fracture strain, tension test of bars with four different notch radii, made of API X65 steel, is firstly performed, from which true fracture strains are determined as a function of notch radius. Then detailed elastic-plastic, large strain finite element (FE) analyses are performed to estimate variations of stress triaxiality in the notched bars with load. Combining experimental with FE results provides the true fracture strain as a function of stress triaxiality, which is regarded as a criterion of ductile fracture. Application of the developed stress-modified fracture strain to failure prediction of gas pipes made of API X65 steel with various types of defects is discussed.

Ductile cracking simulation procedure for welded joints under monotonic tension

  • Jia, Liang-Jiu;Ikai, Toyoki;Kang, Lan;Ge, Hanbin;Kato, Tomoya
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • A large number of welded steel moment-resisting framed (SMRF) structures failed due to brittle fracture induced by ductile fracture at beam-to-column connections during 1994 Northridge earthquake and 1995 Kobe (Hyogoken-Nanbu) earthquake. Extensive research efforts have been devoted to clarifying the mechanism of the observed failures and corresponding countermeasures to ensure more ductile design of welded SMRF structures, while limited research on the failure analysis of the ductile cracking was conducted due to lack of computational capacity and proper theoretical models. As the first step to solve this complicated problem, this paper aims to establish a straightforward procedure to simulate ductile cracking of welded joints under monotonic tension. There are two difficulties in achieving the aim of this study, including measurement of true stress-true strain data and ductile fracture parameters of different subzones in a welded joint, such as weld deposit, heat affected zone and the boundary between the two. Butt joints are employed in this study for their simple configuration. Both experimental and numerical studies on two types of butt joints are conducted. The validity of the proposed procedure is proved by comparison between the experimental and numerical results.

Effect of strain rate and stress triaxiality on fracture strain of 304 stainless steels for canister impact simulation

  • Seo, Jun-Min;Kim, Hune-Tae;Kim, Yun-Jae;Yamada, Hiroyuki;Kumagai, Tomohisa;Tokunaga, Hayato;Miura, Naoki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2386-2394
    • /
    • 2022
  • In this paper, smooth and notched bar tensile tests of austenitic stainless steel 304 are performed, covering four different multi-axial stress states and six different strain rate conditions, to investigate the effect of the stress triaxiality and strain rate on fracture strain. Test data show that the measured true fracture strain tends to decrease with increasing stress triaxiality and strain rate. The test data are then quantified using the Johnson-Cook (J-C) fracture strain model incorporating combined effects of the stress triaxiality and strain rate. The determined J-C model can predict true fracture strain overall conservatively with the difference less than 20%. The conservatism in the strain-based acceptance criteria in ASME B&PV Code, Section III, Appendix FF is also discussed.

Consideration on Effects of Mesh Systems on True Stress-Strain Acquisition Method over a Large Range of Strains by Tensile Test and Finite Element Method (유한요소망이 인장시험과 유한요소법을 이용한 진응력-진변형곡선 획득 기법에 미치는 영향에 관한 고찰)

  • Kim, Hong-Tae;Eom, Jae-Gun;Choi, In-Su;Lee, Min-Cheol;Joun, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.808-813
    • /
    • 2007
  • We present the numerical characteristics of a new true stress-strain curve acquisition method over a large range of strains by the tensile test and a finite element method through comparing the results obtained by various finite element mesh systems. The method is introduced in detail. The effects of the finite element mesh systems on the results are investigated to show its numerical characteristics of the new method. It is shown that the method is quite robust, implying that it can be used as a special function of the tensile test machines.

  • PDF

Study on a 3-Dimensional Rock Failure Criterion Approximating to Mohr-Coulomb Surface (Mohr-Coulomb 파괴곡면에 근사하는 암석의 3차원 파괴조건식 고찰)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.93-102
    • /
    • 2011
  • In spite of being unable to take into the effect of intermediate principal stress, Mohr-Coulomb and Hoek-Brown criteria are very popular as rock failure criteria. The recent researches reveal that the influence of intermediate principal stress on the failure strength of rock is substantial, so that 3-D failure criteria in which the intermediate principal stress could be considered is necessary for the safe design of the important rock structures. In this study, the likely application of the 3-D failure criterion proposed by Jiang & Pietruszczak (1988) to the prediction of the true triaxial strength of rock materials is discussed. The failure condition is linear in the meridian plane of principal stress space and it is represented by the smooth surface contacting the corners of the Mohr-Coulomb surface. The performance of the Jiang & Pietruszczak's criterion is demonstrated by simulating the actual true triaxial tests on the rock samples of three different rock types.

A Study on the Distribution of Residual Stress for Drilled Shaft (현장타설말뚝의 잔류응력 분포에 관한 연구)

  • Kim, Won-Cheul;Hwang, Young-Cheol;Ahn, Chang-Yoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • The distribution of shaft resistance is measured by the static load test with the strain gauge or stress gauge, so that the long-term load distribution must be considered for the pile design. However, the measurement by strain gauge generally assumes the 'zero reading', which is the reading taken at 'zero time' with 'zero' load and the residual stress, which is the negative skin friction(or the negative shaft resistance) caused by the pile construction, is neglected. Therefore, the measured value by strain gauge is different from the true load-distribution because residual stresses were neglected. In this study, the three drilled shafts were constructed, and the strain measurements were carried out just after shaft construction. As a result of this study, it is shown that the true load-distribution of drilled shaft is quite different with known load distribution and the true load-distribution of drilled shaft changed from the negative skin friction to the positive skin according to the load increment.

  • PDF

Site response analysis using true coupled constitutive models for liquefaction triggering

  • Cristhian C. Mendoza-Bolanos;Andres Salas-Montoya;Oscar H. Moreno-Torres;Arturo I. Villegas-Andrade
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • This study focused on nonlinear effective stress site response analysis using two coupled constitutive models, that is, the DM model (Dafalias and Manzari 2004), which incorporated a simple plasticity sand model accounting for fabric change effects, and the PMDY03 model (Khosravifar et al. 2018), that is, a 3D model for earthquake-induced liquefaction triggering and postliquefaction response. A detailed parametric study was conducted to validate the effectiveness of nonlinear site response analysis and porewater pressure (PWP) generation through a true coupled formulation for assessing the initiation of liquefaction at ground level. The coupled models demonstrated accurate prediction of liquefaction triggering, which was in line with established empirical liquefaction triggering relations in published databases. Several limitations were identified in the evaluation of liquefaction using the cyclic stress method, despite its widespread implementation for calculating liquefaction triggering. Variations in shear stiffness, represented by changes in shear wave velocity (Vs1), exerted the most significant influence on site response. The study further indicated that substantial differences in response spectra between nonlinear total stress and nonlinear effective stress analyses primarily occurred when liquefaction was triggered or on the verge of being triggered, as shown by excess PWP ratios approaching unity. These differences diminished when liquefaction occurred towards the later stages of intense shaking. The soil response was predominantly influenced by the higher stiffness values present prior to liquefaction. A key contribution of this study was to validate the criteria used to assess the triggering of level-ground liquefaction using true coupled effective-stress constitutive models, while also confirming the reliability of numerical approximations including the PDMY03 and DM models. These models effectively captured the principal characteristics of liquefaction observed in field tests and laboratory experiments.

Intermediate Principal Stress Dependency in Strength of Transversely Isotropic Mohr-Coulomb Rock (평면이방성 Mohr-Coulomb 암석 강도의 중간주응력 의존성)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.383-391
    • /
    • 2013
  • A number of true triaxial tests on rock samples have been conducted since the late 1960 and their results strongly suggest that the intermediate principal stress has a considerable effect on rock strength. Based on these experimental evidence, various 3-D rock failure criteria accounting for the effect of the intermediate principal stress have been proposed. Most of the 3-D failure criteria, however, are focused on the phenomenological description of the rock strength from the true triaxial tests, so that the associated strength parameters have little physical meaning. In order to confirm the likelihood that the intermediate principal stress dependency of rock strength is related to the presence of weak planes and their distribution to the preferred orientation, true triaxial tests are simulated with the transversely isotropic rock model. The conventional Mohr-Coulomb criterion is extended to its anisotropic version by incorporating the concept of microstructure tensor. With the anisotropic Mohr-Coulomb criterion, the critical plane approach is applied to calculate the strength of the transversely isotropic rock model and the orientation of the fracture plane. This investigation hints that the spatial distribution of microstructural planes with respect to the principal stress triad is closely related to the intermediate principal stress dependency of rock strength.