• Title/Summary/Keyword: Tropical Legumes

Search Result 19, Processing Time 0.026 seconds

Amino Acid Profiles of Tropical Legumes, Cooper (Glycine wightii), Tinaroo (Neonotonia wightii) and Siratro (Macroptilium atropurpureum), at Pre-blooming and Blooming Stages

  • Tokita, Norio;Shimojo, Masataka;Masuda, Yasuhisa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.651-654
    • /
    • 2006
  • An experiment was conducted to investigate amino acid composition of three tropical legumes (Cooper (Glycine wightii), Tinaroo (Neonotonia wightii) and Siratro (Macroptilium atropurpureum)) at two different stages (pre-blooming and blooming stages). Chemical composition and totally 16 amino acids of these plants were analysed for comparison of their composition among species at different growing stages and characterizing the amino acid pattern of these legumes. Crude protein content of the plants ranged from 16% to 27% on a dry matter basis. The total amount of 16 amino acids analyzed in this experiment was highest at 89.7 mg/16 g N in Cooper at pre-blooming and lowest at 80.9 mg/16 g N in Glycine at blooming stage. Total amount of amino acids in each legume species tended to slightly decrease with their maturity but no statistical difference was found. The percentage of aspartic acid, glutamic acid and proline in the total amount of amino acids was dominant at 9% to 13%, and that of methionine was less than 1.6%. In this experiment it was concluded that three tropical legumes were rich in crude protein content and characterized by 16 different amino acids with lower sulfur-containing amino acid as methionine.

EVALUATION OF THREE TROPICAL LEGUMES IN DIETS FOR GROWING RABBITS

  • Lowry, J.B.;Schlink, A.C.;Hoffmann, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.2
    • /
    • pp.257-259
    • /
    • 1992
  • Three tropical legumes, very different in growth form, but believed to be of potential value for animal production were evaluated by substituting the leaf meal made from each for lucerne at the level used in a standard diet for growing rabbits (50%). Each leaf meal had a nitrogen content of close to 3.5% and contributed about 60% of the crude protein in the diet. Albizia lebbeck and Clitoria ternatea showed no evidence of toxic or antinutrient effects. The protein digestibility of the complete diets were 66 and 61% respectively, implying a protein digestibility of the leaf of at least 50%. Both species would be suitable for practical production diets for rabbits and should be excellent for ruminants. In contrast, the diet containing Desmanthus virgatus had a protein digestibility of only 40%, implying that only about 15% of the leaf protein was available. The leaves showed marked non-enzymic browning on drying. When dried this species is clearly unsuitable as a feed for rabbits and possibly also for ruminants. However, it may well be valuable as fresh forage.

Study on Nutritive Value of Tropical Forages in North Sumatra, Indonesia

  • Evitayani, Evitayani;Warly, L.;Fariani, A.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1518-1523
    • /
    • 2004
  • This study was conducted to evaluate nutritive value of forages commonly used as ruminant feeds in North Sumatra, Indonesia. Seven species of grasses and five species of legumes were collected during the rainy season. The results showed that chemical composition, in vitro digestibility of dry matter (DMD), organic matter (OMD) and crude protein (CPD), in vitro gas production and metabolizable energy (ME) content greatly varied among the species of grass and legume forages. The CP content ranged from 6.6 to 16.2% in grass and from 17.5 to 29.1% in legumes; while NDF content of grass and legume ranged from 57.2 to 66.2% and from 24.4 to 55.6%, respectively. The DMD, OMD and CPD of grass ranged from 49.1 to 62.2%, 51.9 to 64.4% and 50.5 to 60.3%; while in legumes the values ranged from 59.1 to 71.8%, 65.2 to 72.0% and 68.2 to 71.6%, respectively. The ME content of grass varied from 6.4 to 9.3 MJ/kg and from 6.5 to 8.3 MJ/kg for legumes. In general, within species of grass Cynodon plectostachyus contained higher CP but was lower in NDF that resulted in much higher digestibility; a similar result was also found in Leucaena leucocephala for the legumes. The two forages also contained much higher ME than the others. In conclusion, the nutritive value of forages in North Sumatra, Indonesia during the rainy season was relatively high as ruminant feed, with the best quality noted for Cynodon plectostachyus and Leucaena leucocephala.

Ruminal and Intestinal Digestibility of Some Tropical Legume Forages

  • Khamseekhiew, B.;Liang, J.B.;Wong, C.C.;Jalan, Z.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.321-325
    • /
    • 2001
  • Two experiments were conducted to examine the degradation rates of 4 tropical legume forages in rumen and intestine of Kedah-Kelantan (KK) cattle. Three KK cattle, averaging $173{\pm}17.15kg$ each fitted with a permanent ruminal and a T-shaped duodenal cannulae were used. The cattle were fed a maintenance diet (1% DM of their body weight) composing of 60% oil palm frond (OPF) pellet and 40% of a legume mixture of Arachis pintoi (AP) and Leucaena throughout the study. The overall DM and CP degradabilities in the rumen for Gliricidia sepium (GS) and AP were significantly higher than those for Leucaena leucocephala-Bahru (LB) and Leucaena leucocephala-Rendang (LR). This implies that LB and LR would have higher dietary protein flows into the intestine for the more efficient enzymatic digestion. However, the results of the present study suggested only limited proportions of the ruminal undegraded protein in the Leucaenas were digested in the intestine.

Nutritive Values of Major Feed Ingredient in Tropics - Review -

  • Winugroho, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.493-502
    • /
    • 1999
  • Majority of livestocks are kept in the tropics. Demand for animal products (meat and milk) is continuously increasing and is related to human population growth. Consequently, potential feeds should be continuously identified particularly on their nutritive values. Crop residues and agricultural by-products are the main feed sources for feeding livestock in the tropics. Their nutritive values ranging from low to medium quality level although Some agricultural by-products such as cotton seed meal and coconut meal are rich in nitrogaen contents. From literatures, nutritive values in these ingredients are mainly based on their chemical composition and to some extent based on limited number of in vivo studies. However, optimum of inclusion in the diet is suggested. Development of tree legumes should be thoroughly considered since they grow well in most tropical regions. In order to improve nutritive value of tropical feeds, biological treatments should be considered. Effect of secondary compounds decreasing efficiency of nutrient utilization in the rumen, to some extent could be reduced by introducing probiotics.

Effects of Tropical High Tannin Non Legume and Low Tannin Legume Browse Mixtures on Fermentation Parameters and Methanogenesis Using Gas Production Technique

  • Seresinhe, Thakshala;Madushika, S.A.C.;Seresinhe, Y.;La, P.K.;Orskov, E.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1404-1410
    • /
    • 2012
  • In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP), dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima${\times}$Leucaena leucocephala (LL) (Trt 1), C. integerrima${\times}$Gliricidia sepium (GS) (Trt 2), Aporosa lindeliyana${\times}$LL (Trt 3), A. lindeliyana${\times}$GS (Trt 4), Ceiba perntandra${\times}$LL (Trt 5), C. perntandra${\times}$GS (Trt 6), Artocarpus heterophyllus${\times}$LL (Trt 7), A. heterophyllus${\times}$GS (Trt 8). The condensed tannin (CT) content of non legumes ranged from 6.2% (Carallia integerrima) to 4.9% (Ceiba perntandra) while the CT of legumes were 1.58% (Leucaena leucocephala) and 0.78% (Gliricidia sepium). Forage mixtures contained more than 14% of crude protein (CP) while the CT content ranged from 2.8% to 4.0% respectively. Differences (p<0.05) were observed in in vitro gas production (IGVP) within treatments over a 48 h period dominated by C. perntandra${\times}$G. sepium (Trt 6). The net gas production (p<0.05) was also high with Trt6 followed by A. heterophyllus${\times}$L. leucocephala (Trt 7) and A. heterophyllus${\times}$G. sepium (Trt 8). Highest (p>0.05) NH3-N (ml/200 mg DM) production was observed with the A. heterophyllus${\times}$G. sepium (Trt 8) mixture which may be attributed with it's highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD) was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM) to be synonimous with IVGP. A higher bacteria population (p<0.05) was found in C. perntandra${\times}$G. sepium (Trt 6) followed by Artocarpus heterophyllus+G. sepium (Trt 8) and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental substitution of legume forage increased gas production parameters, NH3-N, IVDMD and microbial population in the fermentation liquid. Methane production was not significantly affected by the presence of CT or different levels of CP in forage mixtures. Among non legumes, Ceiba perntandra and Artocarpus heterophyllus performed better in mixture with L. leucocephala and G. sepium.

Comparison of Agricultural Traits and Physicochemical Properties of Lentil (Lens culinaris Med.), Chickpea (Cicer aretinum L.), and Guar (Cyamopsis tetragonoloba L.) Germplasms Collected from Tropical and Subtropical Regions (열대, 아열대 지역 수집 렌즈콩, 병아리콩, 송이콩 유전자원의 농업형질과 이화학적 특성 비교)

  • Choi, Yu-Mi;Lee, Sukyeung;Lee, Myung-Chul;Oh, Sejong;Hur, Onsook;Cho, Gyu Taek;Yoon, Munsup;Hyun, Do Yoon
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.453-462
    • /
    • 2018
  • This study was carried out to investigate the utilization value of legume crops collected in tropical and subtropical areas. We examined agronomic traits to assess domestic adaptability and evaluated useful components of foreign legumes. We used a total of 201 genetic resources of three legumes, consisting of 68 lentils, 72 chickpeas and 61 guars. The average number of days to flowering of the three legumes ranged from 56.7 to 60.8 days; the shortest in guar and longest in chickpea. The average number of days to growth of the three legumes ranged from the shortest 86.8 days in lentil, to the longest 163.9 days in guar. The maturation period of the three legumes lasted from the end of May until mid-September, based on sowing in March. However, the average yield of lentil was very low, ranging from 0.5 g to 30.6 g, with an average 16.4 g based on 10 plants per accession. The average 100 seed weight of the three legumes was 2.2 g for lentil, 22.9 g for chickpea, and 3.8 g for guar. The crude protein content ranged from 14.1% to 32.4% with an average of 20.4%, the highest for guar and the lowest for chickpea. The average crude oil content in the three legume crops was generally low, ranging from 0.8% in lentil, to 4.3% in chickpea. The average dietary fiber content in the three legume crops varied from 15.7% to 50.7%. Guar was the highest source of fiber, followed by chickpea (19.3%) and lentil (15.7%). From the agricultural traits analysis, chickpea and guar could grow domestically. However, lentil was difficult to flower and fruit normally during the warmer season after May. Therefore, lentil should be considered for late summer cropping during the cool season. The physicochemical properties of the three legumes seem to be useful as they are similar to, or better than, those of the control common bean.

Release of Mineral Elements from Tropical Feeds during Degradation in the Rumen

  • Ibrahim, M.N.M.;Zemmelink, G.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.530-537
    • /
    • 1998
  • The proportion of dry matter (DM) and mineral elements (Ca, Mg, P, Na, K, Zn) released from eight feeds (2 rice straws, RSI and RS2; 2 grasses, NB21 and guinea; 2 leguminous fodders, glyricidia and erythrina; jak leaves and rice bran) were studied using the nylon bag procedure. Bag incubations up to 10 days were performed in the rumen of cows fed on a ration consisting of 50% wheat straw and 50% hay. Both the type of feed and the incubation time in the rumen significantly influenced (p < 0.01) the proportion of minerals released. In legumes, jak leaves and rice bran about 80% of the potentially degradable DM fraction was solubilized within 24 h in the rumen, and with the grasses, rice straws and jak leaves a considerable proportion of DM was released between 48 and 240 h in the rumen. During the early hours of incubation (up to 24 h) there were distinct differences between and within the feed classes in their ability to release all mineral elements studied. In all test feeds, high proportions of Mg and K were released within 24 h. Some feeds showed a tendency to ad/absorb Ca (grasses, rice straws and rice bran), P (jak leaves, rice straws), Na (glyricidia and rice bran) and Zn (jak leaves) from water and rumen fluid, and this was partly related to the low initial concentration. In terms of absolute quantity of mineral released, legumes (erythrina is superior to glyricidia) are a good source of Ca, Mg, P and Zn, and jak leaves a good source of Ca and Na. Within grasses, guinea contains appreciable quantity of available Mg and P. Rice bran is rich in available Mg, P and Zn.

Variability in Ash, Crude Protein, Detergent Fiber and Mineral Content of Some Minor Plant Species Collected From Pastures Grazed by Goats

  • Serra, A.B.;Serra, S.D.;Orden, E.A.;Cruz, L.C.;Nakamura, K.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.28-34
    • /
    • 1997
  • This study was conducted to determine the protein content, cell wall fractions, and mineral concentrations of some minor plant species collected for one year in pastures grazed by goats in the Philippines. An assessment of nutrient variability and a comparison of forage protein and mineral concentrations to the critical value of protein and minerals based on animal needs were also studied. The plant species were the following: grasses(Axonopus compressus, Eleusine indica, Rottboellia exaltata); legumes (Aeschynomene indica, Calopogonium muconoides, Desmodium tortousum); and herbs (Corchorus olitorius, Ipomea aquatica, Sida acuta, Synedrella nodiflora). The two seasons (dry and wet) were subdivided into Dry-1 (December to February, 132 mm total rainfall), Dry-2 (March to May, 25 mm total rainfall), Wet-1 (June to August, 1,138 mm total rainfall), and Wet-2 (September to November, 1,118 mm total rainfall). Results showed that significant differences were obtained on various nutrient fractions including those mineral concentrations across species. Across season, acid detergent lignin (ADL) had higher (p < 0.05) value at Dry-1. Legumes and herbs were higher in crude protein (CP) especially Sida acuta. Grasses showed the highest neutral detergent fiber (NDF) and acid detergent fiber (ADF) with the addition of Sida nodiflora (herb) for it contained high NDF. Aeschynomene indica contained the highest amount of ADL and the herbs (Ipomea aquatica and Sida acuta) had exceptionally high concentration of minerals. Coefficient variation of the various nutrient values ranged from 27.3 to 136.7%. Some forage minerals appeared to be deficient (sodium, phosphorus and copper) or excess (molybdenum) for the whole or part of the year. This study shows that some minor plant species could extend the range of concentration of some nutrients (i.e., CP and minerals) beyond that normally found in conventional pasture species.