• Title/Summary/Keyword: Trophic State

Search Result 143, Processing Time 0.018 seconds

Dynamics of Phosphorus-Turbid Water Outflow and Limno-Hydrological Effects on Hypolimnetic Effluents Discharging by Hydropower Electric Generation in a Large Dam Reservoir (Daecheong), Korea (대청호 발전방류수의 인·탁수 배출 역동성과 육수·수문학적 영향)

  • Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Daecheong Reservoir was made by the construction of a large dam (>15 m in height) on the middle to downstream of the Geum River and the discharge systems have the watergate-spillway (WS), a hydropower penstock (HPP), and two intake towers. The purpose of this study was to investigate the limnological anomalies of turbid water reduction, green algae phenomenon, and oligotrophic state in the lower part of reservoir dam site, and compared with hydro-meteorological factors. Field surveys were conducted in two stations of near dam and the outlet of HPP with one week intervals from January to December 2000. Rainfall was closely related to the fluctuations of inflow, outflow and water level. The rainfall pattern was depended on the storm of monsoon and typhoon, and the increase of discharge and turbidity responded more strongly to the intensity than the frequency. Water temperature and DO fluctuations within the reservoir water layer were influenced by meteorological and hydrological events, and these were mainly caused by water level fluctuation based on temperature stratification, density current and discharge types. The discharges of WS and HPP induced to the flow of water bodies and the outflows of turbid water and nutrients such as nitrogen and phosphorus, respectively. Especially, when hypoxic or low-oxygen condition was present in the bottom water, the discharge through HPP has contributed significantly to the outflow of phosphorus released from the sediment into the downstream of dam. In addition, HPP effluent which be continuously operated throughout the year, was the main factor that could change to a low trophic level in the downreservoir (lacustrine zone). And water-bloom (green-tide) occurring in the lower part of reservoir was the result that the water body of upreservoir being transported and diffused toward the downreseroir, when discharging through the WS. Finally, the hydropower effluent was included the importance and dynamics that could have a temporal and spatial impacts on the physical, chemical and biological factors of the reservoir ecosystem.

The Long-Term Variations of Water Quality in Masan Bay, South Sea of Korea (남해 마산만 수질의 장기 변동 특성)

  • Kwon, Jung-No;Lim, Jae-Hyun;Shim, Jeonghee;Lee, Jangho;Choi, Tae-Jun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.212-223
    • /
    • 2014
  • For the better understanding of long-term and seasonal variations of water quality in Masan Bay, South Sea of Korea, we analyzed the archive data monitored at three stations of the bay during the last 13 years (2000-2012). The average concentrations of the chemical oxygen demand (COD), the dissolved inorganic nitrogen (DIN) and the dissolved inorganic phosphorus (DIP) during the monitoring period are $2.70{\pm}0.09{\mu}/L$, $19.66{\pm}1.84{\mu}m$ and $1.39{\pm}0.13{\mu}m$ in surface water, respectively, and $2.22{\pm}0.07{\mu}/L$, $18.53{\pm}1.36{\mu}m$ and $1.47{\pm}0.12{\mu}m$ in bottom water, respectively. The trophic state of the surface water was the eutrophic level in Masan Bay during the four seasons. The DIN concentrations of both surface and bottom waters increased from August to November and showed the highest average in November. However, The DIN decreased from February to May and showed the lowest average in May. The concentrations of the DIP and the dissolved silicate (DSi) in bottom waters had the highest averages in August because of the high water temperature and oxygen deficient condition. The results of correlation analysis and factor analysis showed that the main factors of surface waters were inflow of nutrients from terrestrial areas and internal production, and the main factors of bottom waters were the variations of the dissolved oxygen (DO), the DIP, and the DSi. The DIN and DIP average concentrations (2007~2012) had decreased in range of 68.1%~76.0% and 66.2~76.6%, respectively from 2007 in which the "Regulation of Total Emission" was established in Masan Bay. Therefore, it could have had positive effects on water quality improvement to take the "Regulation of Total Emission" and other actions such as reducing water pollutions in Masan Bay from 2007.

Studies on the Changes of Reproductive Organs, Serum Sex Hormones and Metabolites according to the Gestation Period in Rabbit (가토(家兎)의 임신(姙娠)에 따른 생식기관(生殖器官), 혈중(血中) 성(性)Hormone 및 대사물질(代謝物質)의 변화(變化)에 관(關)한 연구(硏究))

  • Lee, Kyu Seung;Han, Sung Wook;Park, Chang Sik
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.303-313
    • /
    • 1982
  • The study was conducted to find out the concentrations of sex hormones and the contents of metabolites in serum, and the changes of weights and tissues on ovary, thyroid gland and adrenal gland according to gestation period in rabbit. The results were summarized as follows: 1. The ovary weights were increased significantly with the time e lapse after gestation and recovered normally at 5 days after parturition. In the histological changes of ovary, the lutein cells were hypertrophied and the secretory granules were increased actively until 3 weeks after gestation, and then a trophied thereafter. 2. The thyroid gland weights at all observation times were higher than those in control group, and the significance was recognized at 1, 3 and 4 weeks after gestation. The histological features of the secretory epithelium were the hyper trophic and columnar condition stimulating the functional state from 1 week after gestation. 3. The adrenal gland weights in experimental group were recognized significantly at 4 weeks after gestation, but showed higher than those in control group at all observation times. The zona fasciculata and zona reticularis of the gland showed the slight hypertrophic condition, but the zona glomeerulosa and adrenal medulla did not find out any particular changes. 4. The serum concentrations of progesterone and LH reached a peak level at 2 weeks and 1 week after geestation respectively, and rapidly began to decline thereafter. 5. The serum concentrations of estradiol-$17{\beta}$ and FSH were not detected below 20.0 pg/ml and 1.3 mIU/ml respectively. 6. The contents of total protein and non-protein nitrogen nitrogen were decreased gradually with the time elapse after gestation, but the significant differences were recognized from 3 weeks. 7. The total lipids were not changed markedly until 3 weeks, but increased significantly at 4 weeks after gestation and at 5 days after parturition. 8. The serum cholesterol tended to be decreased until 3 weeks, but increased at 4 weeks after gestation and at 5 days after parturition. 9. The serum calcium showed a continuous decrease during the gestation period, but the significant differences were recognized at 3 and 4 weeks. The serum phosphorus also had a significant decrease at 4 weeks after gestation.

  • PDF