• 제목/요약/키워드: Triton X

검색결과 345건 처리시간 0.046초

인삼 사포닌이 개 심실 형질막의 $K^+$-의존성 포스파타제 활성에 미치는 영향 (Effect of Ginseng Saponins on $K^+-Dependent$ Phosphatase Activity of Dog Cardiac Sarcolemma)

  • 이신웅;이정수
    • 약학회지
    • /
    • 제36권2호
    • /
    • pp.129-136
    • /
    • 1992
  • The effects of ginseng saponins, gypsophila saponin, sodium dodecyl sulfate(SDS), and Triton X-100 on membrane $K^+-dependent$ phosphatase activity which is lipid dependent and represents dephosphorylation step of the complete Na+, $K^+-ATPase$ reaction were investigated in this study to elucidate whether the effects of ginseng saponins are due to the detergent action, using sarcolemma enriched preparation isolated from dog ventricle. $Na^+$, $K^+-ATPase$ and $K^+-dependent$ phosphatase activities of cardiac sarcolemma were about $143\;{\mu}mol$ Pi/mg protein/hr and $34\;{\mu}mol$ p-nitrophenol/mg protein/hr, respectively. While ginseng saponins (triol>total>diol) inhibited $K^+-dependent$ phosphatase activity, gypsophila saponin, and low dose of SDS($0.4\;{\mu}g/{\mu}g$ protein), and Triton X-100 ($0.6\;{\mu}g/{\mu}g$ protein) increased the enzyme activity, indicating disruptive effect of detergents on membrane barriers. The activating effect of low doses of Triton X-100 on membrane $K^+-dependent$ phosphatase appeared at concentration decreasing light scattering. However, the inhibitory effect of ginseng saponin appeared before a decrease in light scattering. These results suggest that low concentrations of ginseng saponins inhibit the membrane $K^+-dependent$ phosphatase by interacting directly with enzyme before membrane disruption.

  • PDF

미생물에 의한 폐기름 탄화수소의 분해 (Microbial Degradation of Hydrocarbons in the Waste Oil)

  • 정재갑;임운기;신혜자
    • 생명과학회지
    • /
    • 제9권1호
    • /
    • pp.84-91
    • /
    • 1999
  • 폐기름 유출지역에서 분리 동정된 미생물 Xl, X2, X3은 폐유나 그 주성분인 난분해성 물질들을 유일 탄소원으로 자랄 수 있었다. Naphthalene과 2-methyl naphthalene은 7일만에 약 80$\%$ 분해되었다. Hexane과 hexadecane은 거의 대부분 분해되며 60$\%$의 분해가 폐유에서 관찰되었다. 합성 계면활성제인 Triton X-100와 Tween 20은 세포의 성장과 분해에 오히려 저해함을 보였다. Xl, X2은 그람 음성을 X3은 그람 양성을 보이며 항생제 ampicillin에 저항성을 가진다. Xl의 30kb plasmid을 E.coli에 transform하여 유전공학적 활용 가능성을 보였다.

  • PDF

사람 적혈구막 Band 3의 정제 및 Liposome으로의 도입 (Purification of Band 3 from the Human Erythrocyte Membrane and its Incorporation into Liposome)

  • 김재룡;김정희;이기영
    • Journal of Yeungnam Medical Science
    • /
    • 제3권1호
    • /
    • pp.41-48
    • /
    • 1986
  • 사람의 적혈구막으로부터 Band 3를 분리정제하고 이를 liposome 내로 도입시켜 그 결과를 관찰하였다. 적혈구를 약알칼리 저장액으로 용혈시켜 막을 분리한 후, 저이온강도 용액으로 처리하여 Band 4를 추출하였다. Triton X-100 추출액에 p-chloromercuribenzoate를 가하고 sucrose density gradient ultracentrifugation후 fractionation하여 Band 3를 정제하였다. phosphatidyl L-serine과 cholesterol을 1 : 1 molar ratio로 섞고 진공회전 증발기를 사용하여 chloroform을 제거한 후 Triton X-100을 제거한 Band 3용액을 가하고 sonication함으로 liposome(reverse-phase evaporation vesicle)을 만들면서 Band 3를 도입 시켰다 Band 3의 분리정제 및 liposome에 도입되었음은 sodium dodecyl sulfate-polyacrylamide gel 전기영 동 후 coomassie brilliant blue 염색으로 확인할 수 있었다.

  • PDF

비이온성 계면활성제를 이용한 토양내 수착된 나프탈렌의 제거 (Removal of Sorbed Naphthalene from Soils Using Nonionic Surfactant)

  • 하동현;신원식;오상화;송동익;고석오
    • 한국환경과학회지
    • /
    • 제19권5호
    • /
    • pp.549-563
    • /
    • 2010
  • The environmental behaviors of polycyclic aromatic hydrocarbons (PAHs) are mainly governed by their solubility and partitioning properties on soil media in a subsurface system. In surfactant-enhanced remediation (SER) systems, surfactant plays a critical role in remediation. In this study, sorptive behaviors and partitioning of naphthalene in soils in the presence of surfactants were investigated. Silica and kaolin with low organic carbon contents and a natural soil with relatively higher organic carbon content were used as model sorbents. A nonionic surfactant, Triton X-100, was used to enhance dissolution of naphthalene. Sorption kinetics of naphthalene onto silica, kaolin and natural soil were investigated and analyzed using several kinetic models. The two compartment first-order kinetic model (TCFOKM) was fitted better than the other models. From the results of TCFOKM, the fast sorption coefficient of naphthalene ($k_1$) was in the order of silica > kaolin > natural soil, whereas the slow sorbing fraction ($k_2$) was in the reverse order. Sorption isotherms of naphthalene were linear with organic carbon content ($f_{oc}$) in soils, while those of Triton X-100 were nonlinear and correlated with CEC and BET surface area. Sorption of Triton X-100 was higher than that of naphthalene in all soils. The effectiveness of a SER system depends on the distribution coefficient ($K_D$) of naphthalene between mobile and immobile phases. In surfactant-sorbed soils, naphthalene was adsorbed onto the soil surface and also partitioned onto the sorbed surfactant. The partition coefficient ($K_D$) of naphthalene increased with surfactant concentration. However, the $K_D$ decreased as the surfactant concentration increased above CMC in all soils. This indicates that naphthalene was partitioned competitively onto both sorbed surfactants (immobile phase) and micelles (mobile phase). For the mineral soils such as silica and kaolin, naphthalene removal by mobile phase would be better than that by immobile phase because the distribution of naphthalene onto the micelles ($K_{mic}$) increased with the nonionic surfactant concentration (Triton X-100). For the natural soil with relatively higher organic carbon content, however, the naphthalene removal by immobile phase would be better than that by mobile phase, because a high amount of Triton X-100 could be sorbed onto the natural soil and the sorbed surfactant also could sorb the relatively higher amount of naphthalene.

수계 내 테트라사이클린, 설파다이아졸, 트리톤 X-100 혼합물의 광분해 (Photodegradation of Mixtures of Tetracycline, Sulfathiazole, and Triton X-100 in Water)

  • 윤성호;이성종;조은혜;문준관
    • 한국환경농학회지
    • /
    • 제40권1호
    • /
    • pp.13-19
    • /
    • 2021
  • BACKGROUND: Chemicals such as antibiotics and surfactants can enter agricultural environment and they can be degraded by natural processes such as photolysis. These chemicals exist in mixtures in the environment, but studies on degradation of the mixtures are limited. This study compares the photodegradation of Triton X-100 (TX) and antibiotics [tetracycline (TC) and sulfathiazole (STH)] when they are in a single solution or in mixtures. METHODS AND RESULTS: TC, STH, and TX solutions were exposed to UV-A for the photodegradation tests for 14 days. The residual TC, STH, and TX concentrations were analyzed by using HPLC. The TC degradation was similar regardless of the presence of TX, while the TX degradation was lower in the presence of TC. The STH degradation was similar regardless of the presence of TX, while the TX degradation was greater in the presence of STH. However, the STH degradation was slower in the TC-STH-TX mixture than in the STH-TX mixture. Also, the TX degradation was negligible in the TC-STH-TX mixture. The results show that the photodegradation of TC, STH, and TX can be different in mixtures. This can be attributed to the different emission and absorption wavelengths of each compound and interaction between these compounds and photoproducts. CONCLUSION: Overall, this study emphasizes that photodegradation of single chemicals and chemical mixtures can be different, and more studies on single compounds as well as mixtures are required to understand the fate of chemicals in the environment in order to manage them properly.

단백질 분해효소 생산을 위한 Aspergillus oryzae PF균주의 배지조성 (Medium Composition of Aspergillus oryzae PF for the Production of Proteolytic Enzyme)

  • 김두상;김형락;남택정;변재형
    • 한국미생물·생명공학회지
    • /
    • 제27권5호
    • /
    • pp.404-409
    • /
    • 1999
  • The most favorable nitrogen source for the production of protease by Aspergillus oryzae PF was 2% soybean flour among sodium nitrate, ammonium sulfate, defatted soybean, skim milk, casein, peptone, and yeast extract. The production of protease from A. oryzae PF was higher at the concentration of 2% lactose than at variable concentration of glucose, sucrose, soluble starch, corn starch, potato starch, wheat starch, rice starch, cellulose, and gum arabic. Protease production was affected by the concentration of KH2PO4, Triton X-100, CaCo3, and MgSO4, and it was the highest at the highest at the concentration of 3% KH2PO4, 0.01% Triton X-100, 0.3% CaCO3, and 0.06% MGSO4.

  • PDF

PAH로 오염된 토양의 미생물 분해 가속화 연구

  • 이효진;우승한;박종문
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.195-198
    • /
    • 2001
  • Bioremediation of hazardous hydrophobic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), is a major environmental concern due to their toxic and carcinogenic properties. Bue to their low solubility in water, the compounds are microbiologically persistent. This work investigates optimal conditions to enhance the biodegradation of phenanthrene in water and soil-slurry systems. Biodegradation tests were performed with three different types of supplements: glucose as a general carbon source, salicylate as an enzyme inducer, and Triton X-100 as a surfactant. The tests indicate that glucose and Triton X-100 were not very effective to increase biodegradation rate, even though the number of microorganisms are highly increased in the case of glucose addition. Salicylate accelerated biodegradation of phenanthrene, but the addition above optimal concentration inhibited microbial growth. Salicylate is considered to be an attractive alternative for the successful bioremediation of PAH-contaminated soil.

  • PDF

Synthesis of Blue-green Naphthoxy, Chloro Derivative Zinc-phthalocyanines with LCD Requirements

  • Kumar, Rangaraju Satish;Min, Kyeong Su;Son, Young-A
    • 한국염색가공학회지
    • /
    • 제30권3호
    • /
    • pp.159-167
    • /
    • 2018
  • Here we designed and synthesized new zinc phthalocyanines and structures were fully confirmed by spectral and elemental analysis. All phthalocyanines have a very good solubility in industrial solvents like chloroform, dichloromethane, dimethyl sulfoxide, N,N-dimethyl formamide, propylene glycol monomethyl ether acetate (PGMEA), acetone, tetrahydrofuran and acetonitrile. UV-Visible absorption and transmittance in PGMEA showed that these dyes have suitable spectral properties for LCD color filters. By Triton X surfactant study, we confirmed that these dyes are not showing any aggregation in PGMEA. We dissolved the all phthalocyanines in LCD fabricating solvent (PGMEA), and all phthalocyanines showed more than 8 wt% of solubility. Finally, all of these results concluded that PCK1, PCK2 and PCK3 are fit for LCD green color filter.