• Title/Summary/Keyword: Tritium contamination

Search Result 17, Processing Time 0.02 seconds

Environment isotope aided studies on river water and ground water interaction in the Han River basin (동위원소를 이용한 한강유역의 지하수와 지표수의 연관성에 관한 연구)

  • 안종성;김재성
    • Water for future
    • /
    • v.16 no.4
    • /
    • pp.245-252
    • /
    • 1983
  • Recently river water pollution in Korea is given rise to serious problem in aspect of crop production, drinking well, water contamination and etc. Under these urgent situations, it is prime importance to protect water resources from pollutants. An environmental isotope survey of the groundwater form the shallow alluvial and the underlying crystalline rock aquifer of the Han River Basin has been undertaken, Analysis of the data has I) confirmed the hypothesis that the groundwater from the metropolitan area is recharged from the river whereas that form the non-urbanized region of the Basin is replenished by the infiltrating precipitation; ii) shown that crystalline rock aquifers are recharged by the ground water form the overlying alluvium. Old groundwater is a group of wells with tritium values in the range of 0 to 2 TU. These low values indicate that the water sampled was recharged much ealier, at least a few decades, than the other groundwater samples of higher tritium content. The low values in this region may, in fact, reflect the effect of the impermeable clay layers which impede infilteration from the surface. Stable isotope evidence confirmed that a recharge in the karst area occurs at a significantly greater elevation than that to the alluvial aquifer. An analysis of the tritium level collected over an annual cycle suggests that the residence time of groundwater is probably not more than a few months. There does not appear to be any correlation between the trace level of Zn, Mn and Pb in the groundwater and the mechanism of the recharge.

  • PDF

Geochemical Water Quality and Contamination of Shallow and Deep Groundwaters in Myunggok-ri, Kongju (공주시 유구읍 명곡리지역 천부 및 심부지하수의 지화학적 수질특성과 오염)

  • Jeong, Chan-Ho;Hwang, Jeong;Park, Chung-Hwa
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.485-498
    • /
    • 1998
  • The water-rock interaction and anthropogenic contamination affecting to geochemical composition of shallow and deep groundwaters were investigated in the agricultural area of Myunggok-ri, Kongju. The shallow groundwater is classified into the chemical types of $Ca-HCO_3$ and $Ca-Cl(SO_4)$ and shows weak acid having an average pH 6.2. Deep groundwater shows the uncontaminated composition of the chemical types of $Na-HCO_3$ and Na $(Ca)-HCO_3$ with pH of 8.4~8.8. The grouping approach of chemical data of waters shows the distinguished trend between water composition influenced anthrophogenic input and water composition mainly determined by natural process such as water-rock interaction. The main anthropogenic inputs affecting chemical composition of shallow groundwater are the contaminants such as $K^+$, $NO_3{^-}$, $Cl^-$ having average values of 4.4 mg/l, 22 mg/l, 13.7 mg/l, respectively. The contaminants were probably derived from fertilizer, sweage, septic tank, and stable, etc. The hydrogen and oxygen isotopic compositions indicate that five deep groundwaters were recharged from different altitudes, and that shallow and deep groundwaters were originated from meteoric water. Tritium contents of waters suggest that deep groundwater was recharged before or just after 1950s, and that shallow groundwater is much younger than deep groundwater. The results of this study may serve as a basic data for the future study of shallow groundwater as a drinking water in agricultural area, in Korea.

  • PDF

Review of Contamination and Monitoring of On-site Groundwater at Foreign Nuclear Power Plants due to Unplanned Release (비계획적 방출에 의한 해외 원전 부지 지하수 오염 및 감시 기술현황 분석)

  • Sohn, Wook;Lee, Gab-Bok;Yang, Yang-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.2
    • /
    • pp.124-131
    • /
    • 2013
  • Utilities have tried to ensure that radiological hazards to the environment and residents are kept as low as reasonably achievable by monitoring and controlling planned releases. However, since groundwater contamination was reported to occur due to unplanned releases mostly in the United States nuclear power plants, the interest of the stakeholders has increased to a point where it is now one of the most important issues in the United States nuclear power industry. This paper aims to help to implement an effective on-site groundwater monitoring program at domestic nuclear power plants by briefing the experiences of the United States nuclear power plants on groundwater contaminations and groundwater monitoring, and responses of the United States nuclear industry and regulator body for them.

다중 환경추적자를 이용한 제주도 지하수 유동 및 수질 특성 분석

  • 고동찬;김용재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.138-141
    • /
    • 2004
  • The environmental tracers tritium/helium-3 (3H/3He) and chlorofluorocarbons (CFCs) were investigated in ground water from Jeju Island, Korea, a basaltic volcanic island. The apparent 3H/3He and CFC-12 ages were in relatively good agreement in samples with low concentrations of terrigenic He. Ground water mixing was evaluated by comparing 3H and CFC-12 concentrations with mixing models, which distinguished old water with negligible 3H and CFC-12, young water with piston flow, and binary mixtures of the two end members. The ground water CFC-12 age is much older in water from wells completed in confined zones of the hydro-volcanic Seoguipo formation in coastal areas than in water from the basaltic aquifer. Comparison of major element concentrations in ground water with the CFC-12 age shows that nitrate contamination processes contribute more solutes in young water than are derived from water-rock interactions in non-contaminated old water. Chemical evolution of ground water resulting from silicate weathering in basaltic rocks reaches the zeolite-smectite phase boundary. The calcite saturation state of ground water increased with the CFC-12 apparent (piston flow) age. In agricultural areas, the temporal trend of nitrate concentration in ground water was consistent with the known history of chemical fertilizer use on Jeju Island, but the response of nitrate concentration in ground water to nitrogen inputs follows an approximate 10-year delay. Based on mass balance calculations, it was estimated that about 40% of the nitrogen applied by fertilizers reached the water table and contaminated ground water resources when the fertilizer use was at the highest level.

  • PDF

Study on The Salinization in Groundwater of the Eastern Area of Cheju Island (제주도 동부지역 지하수의 염수화에 관한 연구)

  • 김지영;오윤근;류성필
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.47-58
    • /
    • 2001
  • According to the results of the groundwater quality investigation about 230 holes all over the country, the groundwater which was in excess of standard grows larger every year and closed holes increased to 23,457 holes in 1997 from 15,724 holes in 1996. This is the major reasons that water quality contamination, shortage of water quantity, increasing of salinity and so on. There are 7 groundwater salinization sources which are condisered as most important on a regional level. And among theses the Cheju Island groundwater salinization sources are (1) halite solution, (2) natural saline groundwater, (3) sea-water intrusion. The method of taking an isotopes is one of research methods of the origin of groundwater salinization and is used in so many studies because it has very high confidence. $^{18O}O, ^2H, ^3H, ^{14}C$ and so on in an isotopes are frequently used in the method of them. Consequently on this study we analyzed major ions and $^3H$ in groundwater, sea-water and rain of the eastern part of cheju island known as contaminated site from long time ago to examine the origin of groundwater salinization. Relation ratios of the major ions versus chloride ion shows similar tendency to sea-water. This indicates that sea-water entered the groundwater layer. And amount of $^3H$ in holes of the land side is higher than of the sea side. Relation of chloride ion versus $^3$H indicates negative character. Therefore we can think that the reason of groundwater salinization of this part is natural saline groundwater and halite solution by relation.

  • PDF

Geochemical and Environmental Isotope Study on the Groundwater from the Youngcheon Area, Gyeongbuk Province (경북 영천지역 지하수의 지구화학 및 환경동위원소 연구)

  • Kim, Geon-Young;Koh, Yong-Kwon;Bae, Dae-Seok;Won, Chong-Ho;Jung, Do-Hwan;Choi, Byoung-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.35-53
    • /
    • 2007
  • Geochemical and isotope studies on the groundwater system of the Youngcheon area were carried out. Most groundwaters belong to Ca-$HCO_3$ and Ca-$SO_4$ types and some groundwaters belong to Na-$HCO_3$ type. Geochemical characteristics of these groundwaters were mainly affected by their basement rocks around the boreholes. High $SO_4$ content of groundwater is the result of reaction with sulfate or sulfide minerals in the host rock. Ca was originated from the carbonate minerals in the sedimentary rock. After the groundwater was saturated with calcite, the Na-$HCO_3$ type groundwaters were evolved by the reaction with plagioclase for a relatively long residence time. This explanation was supported by low tritium contents of Na-$HCO_3$ type groundwaters. ${\delt}a^{18}O$ and ${\delta}D$ data indicate that the groundwaters are of meteoric water origin and there was no difference between the various types of waters. Grondwaters from the boreholes BH-1, BH-9 and BH-12 showed the geochemical and isotopic characteristics of deep groundwater. Most borehole groundwaters except them did not show the systematic geochemical variations with sampling depth indicating that the shallow and deep groundwaters were mixed with each other throughout the study area. The results of water quality analysis indicate that the study area is highly contaminated by the introduction of agricultural sewage.

Development of a Short-term Failure Assessment of High Density Polyethylene Pipe Welds - Application of the Limit Load Analysis - (고밀도 폴리에틸렌 융착부에 대한 단기간 파손 평가법 개발 - 한계하중 적용 -)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae;Kim, Jong-Sung;Kim, Jeong-Hyeon;Jang, Chang-Heui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.405-413
    • /
    • 2015
  • In the US, the number of cases of subterranean water contamination from tritium leaking through a damaged buried nuclear power plant pipe continues to increase, and the degradation of the buried metal piping is emerging as a major issue. A pipe blocked from corrosion and/or degradation can lead to loss of cooling capacity in safety-related piping resulting in critical issues related to the safety and integrity of nuclear power plant operation. The ASME Boiler and Pressure Vessel Codes Committee (BPVC) has recently approved Code Case N-755 that describes the requirements for the use of polyethylene (PE) pipe for the construction of Section III, Division 1 Class 3 buried piping systems for service water applications in nuclear power plants. This paper contains tensile and slow crack growth (SCG) test results for high-density polyethylene (HDPE) pipe welds under the environmental conditions of a nuclear power plant. Based on these tests, the fracture surface of the PENT specimen was analyzed, and the fracture mechanisms of each fracture area were determined. Finally, by using 3D finite element analysis, limit loads of HDPE related to premature failure were verified.