• Title/Summary/Keyword: Triticum durum

Search Result 8, Processing Time 0.022 seconds

Morphological Traits of Trisomic Plant in Durum Wheat (듀럼밀 3염색체 식물의 형태적 특성)

  • 오세관
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.4
    • /
    • pp.392-402
    • /
    • 1997
  • The morphological traits of different types of primary trisomics(2n=28+1) in durum wheat, Triticum durum var. hordeiforme(2n=28 AABB) were compared with disomics (2n=28) through the examination of reciprocal gene action on the extra chromosomes. However it was not easy to distinguish morphologically the trisomies containing A genome from those containing B genome. These results suggested that the chromosomal location of the major genes for some morphological traits exists on homoeologous chromosome. It is important that these results revealed the homoeology and linkage groups of both A and B genomes in durum wheat. These primary trisomies will be valuable materials for the trisomic analysis and genetic mapping on the chromosome of both A and B genomes in durum wheat. Furthermore, it must be useful for the evolutionary study of Triticum durum(AABB) and Triticum squarrosa(DD) by way of the ancester species of Triticum aesitivum(AABBDD).

  • PDF

Physiological and Genetic Responses of Salt-stressed Tunisian Durum (Triticum turgidum ssp. durum) Cultivars

  • Kim, Sang Heon;Kim, Dae Yeon;Yacoubi, Ines;Seo, Yong Weon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.314-321
    • /
    • 2018
  • Durum (Triticum turgidum L. ssp. durum) is a major crop species cultivated for human consumption worldwide. In Tunisia, salt stress is one of the main problems that limit crop production. 'Mahmoudi' was selected as the most salt-sensitive out of 11 Tunisian durum cultivars. Using the salt-tolerant cultivar 'Om Rabia', resistant and susceptible cultivars were evaluated to compare genetic responses under salt stress. At the fully expanded third leaf stage, salt stress was applied by submerging the pots in 500 mM NaCl for 5 min every day for saline water irrigation in the greenhouse. The treatment was applied for 1 week and salt stress tolerance was determined by changes of growth parameters to the control condition. The salt tolerance trait index and salt tolerance index were calculated and used as selection criteria. The expression levels of TdHKT1;4, TdHKT1;5, and TdSOS1 were examined using qPCR. For further evaluation of physiological responses, salt stress (150 mM NaCl) was additionally applied for 48 h at the fully expanded third-leaf stage. Increased expression of the genes responsible for salt tolerance and proline content in tolerant durum can be used to broaden genetic diversity and provide genetic resources for the durum breeding program.

Chromosome Variation in Suspension Cells Derived from Cultured Immature Embryo of Triticum spp. (밀(Triticum spp.)의 미성숙배로부터의 유도한 현탁 배양세포에서의 염색체 변이)

  • 방재욱
    • Journal of Plant Biology
    • /
    • v.33 no.3
    • /
    • pp.189-196
    • /
    • 1990
  • Suspension cell lines have been newly established from the calli derived from the immuature embryo culture of hexapolid (Triticum aestivum var. sicco), tetrapolid (T. durum) and diploid (T. tauchii or Aegilops squarrosa) wheat species. The chromosomal variation in suspension cultured cell lines was examined and old cell line, C82d, established from T. aestivum var. copain was also used. New method using 1-bromonaphthalene for metaphase rapping of suspension cells was developed. Variation in chromosome number was observed among all the suspension lines. Cells with doubled chromosome number and deleted chromosome were also observed. Extensive structural changes in chromosome were found in C82d line. Chromosome aberrations showed loss of chromosome arms and chromosome segment. The mean chromosome number in suspension cells of T. aestivum var. sicco was 40, in C82d line 33, in T. durum 28 and in T. tauchii 14. The stability of chromosome in suspension cells of diploid and tetrapolid wheats was higher than that of hexaploid wheat.

  • PDF

Effect of picloram and 2,4-D on plant regeneration from mature and immature embryos of moroccan durum wheat varieties

  • Ahansal, Khadija;Aadel, Hanane;Udupa, Sripada Mahabala;Gaboun, Fatima;Abdelwahd, Rabha;Ibriz, Mohammed;Iraqi, Driss
    • Journal of Plant Biotechnology
    • /
    • v.49 no.2
    • /
    • pp.131-138
    • /
    • 2022
  • An efficient genetic transformation protocol is a fundamental requirement for high regeneration capacity from cultivated durum wheat (Triticum durum) varieties. In this study, wereportedtheeffectsoftwoauxins,2,4-dichlorophenoxyaceticacid(2,4-D)and4-amino-3,5,6-trichloropicoli nicacid(picloram), at a concentration of 2 mg/Laloneandincombination on the embryogenic callus and plantlet regeneration of four durum wheat varieties (Amria, Chaoui, Marouane, and Tomouh) using mature embryos (MEs) and immature embryos (ImEs). Significanteffectsofvariety,culturemedium(theauxinused),andvariety-mediuminteraction were observed on the callus weight and plantlet regeneration of both MR and ImE explants. The medium used for callus induction significantly affected plantlet regeneration (p < 0.001). Comparedto2,4-D, picloram led to a higher plantlet regeneration rate in both ME and ImE explants (19.8% and 40.86%, respectively). Plantlet regeneration also varied significantly depending on the variety and medium used. PicloramledtohighplantletregenerationofbothME and ImE explants in all varieties except Tomouh, which showed high plantlet regeneration of ME explants in 2,4-D. A comparison of ME and ImE responses indicated that ImEs are the best explants for high plantlet regeneration in durum wheat. Ourfindingssuggestthatpicloramisthebestauxin and should be used instead of 2,4-D due to its positive effect on increasing plant regeneration of durum wheat ME and ImE explants.

Multivariate Characterization of Common and Durum Wheat Collections Grown in Korea using Agro-Morphological Traits

  • Young-ah Jeon;Sun-Hwa Kwak;Yu-Mi Choi;Hyemyeong Yoon;Myoung-Jae Shin;Ho-Sun Cheon;Sieun Choi;Youngjun Mo;Chon-Sik Kang;Kebede Taye Desta
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.343-370
    • /
    • 2023
  • Developing improved wheat varieties is vital for global food security to meet the rising demand for food. Therefore, assessing the genetic diversity across wheat genotypes is crucial. This study examined the diversity of 168 durum wheat and 47 common wheat collections from 54 different countries using twelve agro-morphological parameters. Geumgang, a prominent Korean common wheat variety, was used as a control. Both qualitative and quantitative agronomical characteristics showed wide variations. Most durum wheats were shown to possess dense spikes (90%), while common wheats showed dense (40%) or loose (38%) spikes, with yellowish-white being the dominant spike color. The majority of the accessions were awned regardless of wheat type, yellowish-white being the main awn color. White or red kernels were produced, with white kernels dominating in both common (74%) and durum (79%) wheats. Days to heading (DH) and days to maturity (DM) were in the ranges of 166-215 and 208-250 days, respectively, while the culm length (CL), spike length (SL), and awn length (AL) were in the ranges of 53.67-163, 5.33-18.67, and 0.50-19.00 cm, respectively. Durum wheats possessed the shortest average DH, DM, and SL, while common wheat had the longest CL and AL (p < 0.05). Common wheats also exhibited the highest average one-thousand-kernel weight. Hierarchical cluster analysis, aided by principal component analysis, grouped the population into seven clusters with significant differences in their quantitative variables (p < 0.05). In conclusion, this research revealed diversity among common and durum wheat genotypes. Notably, 26 durum wheat and 17 common wheat accessions outperformed the control, offering the potential for developing early-maturing, high-yielding, and lodging-resistant wheat varieties.

Chromosome Identification of Durum Wheat by Acetocarmine Wright C-banding Technicque. (C-banding 법에 의한 Macaroni Wheat 의 염색체동정)

  • 오세관
    • Korean Journal of Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.5-12
    • /
    • 1991
  • A combination of acerocarininc-Wright C-banding technique was utilized to identify each chromosomes in durum wheat ,Triticum durum var. Hordeiforme (2n=4x=28 AABB), This technique elucidated qualitativr and quantitative traits of the indi-vidual chromosomes In coinplement. Most comspicuous bands were observed at thecentromere of B-genome chronmosomes. Each chromosomes of A-genome had some-what weak centromeric, proximal and terminal bands. Chromosomes 2A and 4A hasa small subterminal bands. 6A is smallest and metacentric chromosome and , has two faint interstitial band. Chromosomes 1B and 6B showed satellite and constriction lage band. Short arm of 3B has three heavily interstitial bands. Both arms of chromosome 4B has a lagc centromeric band and a very lage proximal band. 5B had heavilycentromeric band and the long arm showed prominent two interstitial bands. Chromo-somes 25 and 7B has a small terminal band of both arms.

  • PDF

Connection of the chromosome and the extent of incidence of ergot fungus in durum wheat (마카로니밀에 있어서의 맥각병의 이병정도와 염색체와의 관련성)

  • SeaKwanOh
    • Korean Journal of Plant Resources
    • /
    • v.8 no.1
    • /
    • pp.47-54
    • /
    • 1995
  • The ergot fungus requiers a rather long time for the incubation period for a disease and fungus tends to obstract the formation of the seeds. In order to do an experiment inoculated, a spore of ergot fungi into the florets was done 2-3 days before flowering. As a result, each trisomic types recognized the infection rate to be 90% to 100% so the trisomies of complete immunity was non existent in durum wheat, Triticum durum var. hordeiforme. However, the growth rate of large sclerotium than seeds differed mutually with each trisomic types. This tend to be sensitivity on the trisomies which has been the extra chromosomes of 2A, 4A and 7B in comparison with normal plant but the trisomies related to Tri-6A line was not forming the sclerotium of large size than seeds and grew outside the florets. Consequently, the resisitant gene against ergot fungi was considered to be existing on the chromosome 6A. The ergot fungi requires a long time for the incubation period until it is taken away from infection. The essential effect of resistant gene did not surmise on the chromosome 6A that gene concerned with the physiological effect to restrain the growing up of a ergot fungi in the growing process of plants.

  • PDF

Effect of Inclusion of Hard Versus Soft Wheat Bran with Different Particle Size on Diet Digestibility, Growth Performance and Carcass Traits of Fattening Rabbits

  • Laudadio, V.;Dario, M.;Addonizio, F.;Tufarelli, Vincenzo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.10
    • /
    • pp.1377-1385
    • /
    • 2009
  • Effect of inclusion of hard vs. soft wheat bran with different particle size on diet digestibility, growth performance and some slaughter traits was evaluated in fattening rabbits. Four isonitrogenous and isocaloric diets were used according to the origin of wheat bran (hard (HWB) - Triticum durum - and soft (SWB) - Triticum aestivum) combined with wheat bran particle size sieved by 2 mm (fine: 2) or by 8 mm (coarse: 8) in a bifactorial (2${\times}$2) study. A growth trial was conducted to measure the effect of treatments on performance in one hundred and twenty New Zealand White${\times}$Californian rabbits fed experimental diets from 50 to 87 days of age. Faecal apparent digestibility was determined within the last week in twenty animals per diet. Digestibility of nutrients was higher (p<0.05) in the diet containing HWB2, except for crude protein, ether extract and ash, than fine and coarse soft wheat bran diets. Final live weight, feed intake and feed consumption of rabbits on the diet with fine hard wheat bran were higher and resulted in greater daily weight gains (p<0.01) than for animals on the other diets. The slaughter yield and percentage value of organs were not significantly (p>0.05) affected by the diets fed; however, the diet containing fine hard wheat bran led to lower (p<0.05) percentages of skin, abdominal fat and carcass drip loss than the other dietary treatments. It is concluded that fine hard wheat bran can be better included in the diet than soft wheat bran to maximize growth performance without affecting carcass traits of fattening rabbits.