• Title/Summary/Keyword: Tris-crown ether

Search Result 3, Processing Time 0.019 seconds

Synthesis, Characterization and Complexation Behavior Investigations of Novel Bis- and Tris-crown Ethers

  • Huang, Zhi Bin;Kim, Sung-Hong;Chang, Seung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.893-898
    • /
    • 2006
  • Novel bis- and tris-crown ethers were synthesized from 1-aza and diaza-crown ethers with 2-acryloyloxy-methyl crown ethers through Michael addition. The synthesized bis- and tris-crown ethers were characterized by their elemental analyses, $^1H$-NMR, $^{13}C$-NMR, mass spectra, IR spectra, respectively. The complexation behavior of the bis- and tris-crown ethers with $Li^+$, $Na^+$, $Na^+$, $Rb^+$, $Cs^+$ was examined by $^1H$-NMR, FAB mass, and UV spectrometry.

Lipophilic Crown-4 Derivatives as Lithium Ionophores for Lithium Ion Selective Liquid Membrane Electrodes

  • Jae Sang Kim;Sung Ouk Jung;Shim Sung Lee;Si-Joong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.123-127
    • /
    • 1993
  • New lipophilic Crown-4 compounds of 16-membered rings containing furan (neutral carrier,I), tetrahydrofuran (neutral carrier,II) and lithium complex of the latter (neutral carrier,III) have been synthesized and tested as the active sensors for lithium ion in poly(vinyl chloride) (PVC) membrane electrode, in the presence and absence of an anion excluder, tetrakis(4-chloro-phenyl)borate (KTClPB), 2-nitrophenyl phenyl ether (NPPE), tris(2-ethylhexyl)phosphate (TEHP), o-nitrophenyl octyl ether (NPOE), dioctyl adipate (DOA), bis(2-ethylhexyl)adipate (BEHA), di-n-octylphenyl phosphonate (DOPP) were used as plasticizing solvent mediators. The electrode response function had a nearly Nernstian slope of 54-61 mV per decade (25$^{\circ}$C) within the concentration range of $10^{-1}-10^{-4}$ M LiCl and the detection limits for all electrodes were ca. $5{\times}10^{-4}$ M. The response time of the electrode was faster at the higher lithium concentration and the response of the electrode was stable for longer than 6 months. The sensor membranes exhibit improved response times and increased lifetimes as compared to the system described earlier.

Coated Wire Lead(Ⅱ) Ion-Selective Electrodes based on Crown Ethers (Crown Ether를 이용한 탐침형 납 이온선택성 전극)

  • Jang, Mi Kyeong;Ha, Kwang Soo;Seo, Moo Lyong
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.7
    • /
    • pp.337-342
    • /
    • 1997
  • Acryloylmethylbenzo-15-crown-5 was prepared from the reaction of 4'-hydroxymethylbenzo-15-crown-5 with acryloyl chloride. And, poly(acryloylmethylbenzo-15-crown-5) [poly(AMB15C5)] was synthesized by radical polymerization using AIBN as initiator in benzene. Coated wire lead(II) ion-selective electrodes ($Pb^{2+}$-CWISEs) using either poly(AMB15C5) or B15C5 as neutral carrier were prepared, respectively. $Pb^{2+}$-CWISEs gave linear responses with slopes of 28$\pm$ 1mV per decade within the concentration range of $10^{-5} M{\sim}10^{-1}$ M, respectively. Also, the detection limits were $10^{-6}$ M and response times were either 3 or 5 min. for B15C5 and poly(AMB15C5), respectively. $Pb^{2+}$-CWISE base on B15C5 was rather unstable than poly(AMB15C5)'s due to solubility of the B15C5 in water. The selectivity coefficients of a variety of interfering ions such as $Mg^{2+},\; Ca^{2+},\; Co^{2+},\; Ni^{2+},\; Cu^{2+},\; Zn^{2+}$ and $Cd^{2+}$ were small ($10^{-4}{\sim}10^{-5}$), while those of $Na^+$ and $K^+$ were large (0.1∼0.01). In addition, the electrode responses depended upon the pH of test solution and the composition of the membrane. In the range pH 3∼6 of test solution, potentials of Pb2+-CWISEs were hardly changed. The optimal contents of B15C5 and poly(AMB15C5) were 7.7 wt% and 13.1 wt%, respectively.

  • PDF