• Title/Summary/Keyword: Triplet state

Search Result 86, Processing Time 0.024 seconds

Vascular Cell Responses against Oxidative Stress and its Application

  • Ryoo, Sung-Woo;Lee, Sang-Ki;Kim, Cuk-Seong;Jeon, Byeong-Hwa
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-9
    • /
    • 2004
  • The history of studies in biology regarding reactive oxygen species (ROS) is approximately 40 years. During the initial 30 years, it appeared that these studies were mainly focused on the toxicity of ROS. However, recent studies have identified another action regarding oxidative signaling, other than toxicity of ROS. Basically, it is suggested that ROS are reactive, and degenerate to biomolecules such as DNA and proteins, leading to deterioration of cellular functions as an oxidative stress. On the other hand, recent studies have shown that ROS act as oxidative signaling in cells, resulting in various gene expressions. Recently ROS emerged as critical signaling molecules in cardiovascular research. Several studies over the past decade have shown that physiological effects of vasoactive factors are mediated by these reactive species and, conversely, that altered redox mechanisms are implicated in the occurrence of metabolic and cardiovascular diseases ROS is a collective term often used by scientist to include not only the oxygen radicals($O2^{-{\cdot}},\;{^{\cdot}}OH$), but also some non-radical derivatives of oxygen. These include hydrogen peroxide, hypochlorous acid (HOCl) and ozone (O3). The superoxide anion ($O2^{-{\cdot}}$) is formed by the univalent reduction of triplet-state molecular oxygen ($^3O_2$). Superoxide dismutase (SOD)s convert superoxide enzymically into hydrogen peroxide. In biological tissues superoxide can also be converted nonenzymically into the nonradical species hydrogen peroxide and singlet oxygen ($^1O_2$). In the presence of reduced transition metals (e.g., ferrous or cuprous ions), hydrogen peroxide can be converted into the highly reactive hydroxyl radical (${^{\cdot}}OH$). Alternatively, hydrogen peroxide may be converted into water by the enzymes catalase or glutathione peroxidase. In the glutathione peroxidase reaction glutathione is oxidized to glutathione disulfide, which can be converted back to glutathione by glutathione reductase in an NADPH-consuming process.

  • PDF

Photocatalytic Oxidation of 2-Mercaptoethanol to Disulfide using Sb(V)-, P(V)-, and Ge(IV)-porphyrin Complexes

  • Shiragami, Tsutomu;Onitsuka, Dai;Matsumoto, Jin;Yasuda, Masahide
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.70-72
    • /
    • 2014
  • Visible-light irradiation of MeCN solution containing di(hydroxo)metallo(tetraphenyl)porphyrin complex $(tppM(OH)_2$: 1a; $M=Sb(V)^+Br^-$, 1b; $M=P(V)^+Cl^-$, 1c; M=Ge(IV)) and 2-mercaptoethanol (2-ME) as a substrate under aerated condition gave bis(2-hydroxyethyl)disulfide (2-HEDS) as an oxidative product of 2-ME. It is indicated that the oxidation of 2-ME should proceed with a photocatalytic process by 1, because the turn over number (TON) for the formation of 2-HEDS was over unit. The TON was determined to be 642 as a maximum value when 1a was used as a sensitizer. The formation of 2-HDES was extremely slow under argon atmosphere. The fluorescence of 1 was not quenched by 2-ME at all, and the free energy change (${\Delta}G$) with electron transfer (ET) from 2-ME to excited triplet state of $1(^31^*)$ was estimated as a negative value. The quenching rate constant ($k_r$) of $^31^*$ by 2-ME, obtained by the kinetics for the formation of 2-HEDS, strongly depends on ${\Delta}G$. These findings indicate that 1-sensitized oxidation was initiated by photoinduced ET from 2-ME to $^31^*$ to generate both radical cation of 2-ME ($2-ME^{+\bulle}$) and porphyrin radical anion ($1^{-\bulle}$), resulting that the formation of 2-HEDS can be proceeded by the dimerization of $2-ME^{+\bulle}$, and through a catalytic cycle due to returning to 1 by the ET from $1^{-\bulle}$ to molecular oxygen.

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • Kim, Beom-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

Spectroscopic Analyses of Rose Bengal Sensitized and NaI Supersensitized Photocurrent (Rose Bengal 감응 및 NaI 초감응 광전류의 분광학적 분석)

  • Yoon Kil-Joong;Min Hyun-Jin;Kim Kang-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.107-112
    • /
    • 1992
  • Electron injection from excited rose bengal into the conduction band of a thin film of $SnO_2$ semiconductor in acetonitrile was investigated in an electrochemical cell, ITO/$SnO_2$/rose bengal, NaI or $I_2$, $NaClO_4$/Pt. It was observed that NaI enhanced the supersensitized photocurrent, followed by the slow reduction, whereas $I_2$ yielded a fast decaying photocurrent. Spectroscopic analyses of the dye solution containing NaI revealed that electron is transferred to the $SnO_2$ electrode from the reduced rose bengal and iodide is responsible for the reduction of the dye in triplet state. However $I_2$ appears to possess neither the reducing ability of the oxidized dye nor the retardation of the dehalogenation of RB.

  • PDF

Synthesis, Characterization and ESR Studies of New Copper(II) Complexes of Vicinal Oxime Ligands (Vicinal Oxime 리간드의 새로운 구리(II) 착물에 대한 합성, 특성 및 ESR 연구)

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.603-611
    • /
    • 2011
  • Ethoxylacetyl oxime ligands [HL, (1) and $H_2L^1$, (3)] react with copper(II) acetate monohydrate yield octahedral and square planar complexes, respectively. The complexes have been postulated due to elemental analyses, IR, UVVis. spectra, magnetic susceptibility, conductivity and ESR spectra. Molar conductance of the complexes in DMF indicates a non-ionic character. The ESR spectra of [$(L)_2Cu(H_2O)_2$], (2) complex at room temperature and 77K are characteristic of an axial symmetry ($d_{x2-y2}$) with covalent bond character and have a large line width typical of dipolar interactions. However, [$(L^1)Cu$], (4) complex in the solid state showed spectra of marked broadening and loss of hyperfine splitting confirming spinexchange interactions between the copper(II) sites. The spectrum of the doped copper(II) complex at room temperature showed super-hyperfine splitting from coordinated nitrogen atoms and it has an axial type ($d_{x2-y2}$) with covalent bond character and an essentially square-planar arrangement around the copper(II) ion. The spectrum of [$(L^1)Cu$], (4) in frozen methanol at 77K was characteristic of the triplet state of a dimer species and the distance found between the two copper(II) centers was calculated and is equal to 4.8 ${\AA}$.

The Comparison of Pregnancy Outcomes between Elective Two and Three Cleavage-state Embryos Transfer in Fresh IVF-ET (체외수정술시 난할단계 배아 2개와 3개를 이식했을 때의 임신예후의 비교)

  • Lyu, Sang-Woo;Won, Hyung-Jae;Lee, Woo-Sik;Han, Ji-Eun;Kim, A-Ri;Kim, You-Shin;Seok, Hyun-Ha;Yoon, Tae-Ki
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • Objective: To compare the respective pregnancy outcomes of cycles undergoing elective two cleavage-stage embryos transfer (2ET) and three cleavage-stage embryos transfer (3ET) in fresh in vitro fertilization and embryo transfer (IVF-ET) program. Methods: We conducted a retrospective matched case control study that included 100 women with 2ET and 100 women with 3ET from January 2007 to June 2009. Subjects were matched for reproductive profiles and cycle characteristics. All of transferred embryos in both groups had good qualities. Pregnancy rates (PR), implantation rate, and multiple PR were compared. Results: Demographics, stimulation parameters and embryological data were comparable in both groups. Main pregnancy outcomes with 2ET and 3ET groups were not statistically different; implantation rate (41.0% vs. 35.3%), positive pregnancy rate (58.0% vs. 60.0%), clinical PR (55.0% vs. 59.0%), ongoing PR (51.0% vs. 55.0%), respectively. However, the 3ET group showed significantly higher multiple pregnancy and triplet pregnancy rates (30.9% vs. 50.8%, p=0.031; 1.8% vs. 11.9%, p=0.036, respectively). Conclusion: In women with favorable conditions and good quality embryos undergoing IVF, 2ET can get pregnancy outcomes comparable to those of 3ET and reduce multiple pregnancy (especially, triplet pregnancy).