• Title/Summary/Keyword: Triplet Map

Search Result 6, Processing Time 0.027 seconds

Photometric Properties and Spatial Distribution of RSGs of Nearby Galaxy System: Leo Triplet

  • Lee, Sowon;Chiang, Howoo;Sohn, Young-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.60.2-60.2
    • /
    • 2018
  • We present the near infrared JHK photometric properties and the spatial distribution of red supergiants(RSGs) of NGC 3623, NGC 3627 and NGC 3628 in the Leo Triplet system using the data obtained with 3.8m UKIRT(United Kingdom Infra-Red Telescope) at Hawaii. We checked interaction between the three galaxies by making a spatial density map of RSGs. From (J-K,K)0 Color-Magnitude Diagram which include resolved stars in three galaxy and control field with PARSEC isochrone, we figured out the RSG candidates of the Leo triplet are at 0.9<(J-K)0<1.2, mK<17.5 and separated them from background and foreground sources. Using gaussian kernel density estimation, we drew spatial density map of RSGs in the Leo triplet with an assumption that all RSGs are an identical population. The density map shows extended features of NGC 3628 to NGC 3627 along the declination direction. The asymmetries between NGC 3627 and NGC 3628 might be evidence for that the distribution of actual star components(RSGs) follows the neutral hydrogen distribution and also for interaction between two galaxies. And the extended features along the right ascension direction might be a supporting evidence for the existence of a TDG(Tidal Dwarf Galaxy). In case of NGC 3623, we could not see any sign of interaction in density map.

  • PDF

Analysis for Scalar Mixing Characteristics using Linear Eddy Model (Linear Eddy Model을 이용한 스칼라의 혼합특성 해석)

  • Kim, Hoo-Joong;Kim, Yong-Mo;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.133-137
    • /
    • 2004
  • The present study is focused on the small scale turbulent mixing processes in the scalar field. In order to deal with molecular mixing in turbulent flow, the linear eddy model is addressed. In each realization, the molecular mixing term is implemented deterministically, and turbulent stirring is represented by a sequence of instantaneous, statistically independent rearrangement event called by triplet map. The LEM approach is applied with relatively simple conditions. The characteristics of scalar mixing and PDF profiles are addressed in detail.

  • PDF

Analysis for Scalar Mixing Characteristics using Linear Eddy Model (Linear Eddy Model을 이용한 스칼라의 혼합특성 해석)

  • Kim, H.J.;Ryu, L.S.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • The present study is focused on the small scale turbulent mixing processes in the scalar Held. In order to deal with molecular mixing in turbulent flow, the linear eddy model is addressed. In each realization, the molecular mixing term is implemented deterministically, and turbulent stirring is represented by a sequence of instantaneous, statistically independent rearrangement event called by triplet map. The LEM approach is applied with relatively simple conditions. The characteristics of scalar mixing and PDF profiles are addressed in detail.

  • PDF

Modeling and Implementation for Generic Spatio-Temporal Incorporated Information (시간 공간 통합 본원적 데이터 모델링 및 그 구현에 관한 연구)

  • Lee Wookey
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.1
    • /
    • pp.35-48
    • /
    • 2005
  • An architectural framework is developed for integrating geospatial and temporal data with relational information from which a spatio-temporal data warehouse (STDW) system is built. In order to implement the STDW, a generic conceptual model was designed that accommodated six dimensions: spatial (map object), temporal (time), agent (contractor), management (e.g. planting) and tree species (specific species) that addressed the 'where', 'when', 'who', 'what', 'why' and 'how' (5W1H) of the STDW information, respectively. A formal algebraic notation was developed based on a triplet schema that corresponded with spatial, temporal, and relational data type objects. Spatial object structures and spatial operators (spatial selection, spatial projection, and spatial join) were defined and incorporated along with other database operators having interfaces via the generic model.

  • PDF

Characteristics of the Electro-Optical Camera(EOC)

  • Lee, Seung-Hoon;Shim, Hyung-Sik;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.313-318
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of Korea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including Digital Terrain Elevation Map(DTEM). This instrument which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510 ~ 730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable rain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the EOC data users. The modulation transfer function of EOC was measured as greater than 16% at Nyquist frequency over the entire field of view which exceeds its requirement of larger than 10%, The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.

  • PDF

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.