• Title/Summary/Keyword: Triphenyltetrazolium chloride

Search Result 51, Processing Time 0.03 seconds

Changes in Gene Expression in the Rat Hippocampus after Focal Cerebral Ischemia

  • Chung, Jun-Young;Yi, Jae-Woo;Kim, Sung-Min;Lim, Young-Jin;Chung, Joo-Ho;Jo, Dae-Jean
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.3
    • /
    • pp.173-178
    • /
    • 2011
  • Objective : The rat middle cerebral artery thread-occlusion model has been widely used to investigate the pathophysiological mechanisms of stroke and to develop therapeutic treatment. This study was conducted to analyze energy metabolism, apoptotic signal pathways, and genetic changes in the hippocampus of the ischemic rat brain. Methods : Focal transient cerebral ischemia was induced by obstructing the middle cerebral artery for two hours. After 24 hours, the induction of ischemia was confirmed by the measurement of infarct size using 2,3,5-triphenyltetrazolium chloride staining. A cDNA microarray assay was performed after isolating the hippocampus, and was used to examine changes in genetic expression patterns. Results : According to the cDNA microarray analysis, a total of 1,882 and 2,237 genes showed more than a 2-fold increase and more than a 2-fold decrease, respectively. When the genes were classified according to signal pathways, genes related with oxidative phosphorylation were found most frequently. There are several apoptotic genes that are known to be expressed during ischemic brain damage, including Akt2 and Tnfrsf1a. In this study, the expression of these genes was observed to increase by more than 2-fold. As energy metabolism related genes grew, ischemic brain damage was affected, and the expression of important genes related to apoptosis was increased/decreased.Conclusion : Our analysis revealed a significant change in the expression of energy metabolism related genes (Atp6v0d1, Atp5g2, etc.) in the hippocampus of the ischemic rat brain. Based on this data, we feel these genes have the potential to be target genes used for the development of therapeutic agents for ischemic stroke.

Blood-Brain Barrier Experiments with Clinical Magnetic Resonance Imaging and an Immunohistochemical Study

  • Park, Jun-Woo;Kim, Hak-Jin;Song, Geun-Sung;Han, Hyung-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • Objective : The purpose of study was to evaluate the feasibility of brain magnetic resonance (MR) images of the rat obtained using a 1.5T MR machine in several blood-brain barrier (BBB) experiments. Methods : Male Sprague-Dawley rats were used. MR images were obtained using a clinical 1.5T MR machine. A microcatheter was introduced via the femoral artery to the carotid artery. Normal saline (group 1, n = 4), clotted autologous blood (group 2, n = 4), triolein emulsion (group 3, n = 4), and oleic acid emulsion (group 4, n = 4) were infused into the carotid artery through a microcatheter. Conventional and diffusion-weighted images, the apparent coefficient map, perfusion-weighted images, and contrast-enhanced MR images were obtained. Brain tissue was obtained and triphenyltetrazolium chloride (TTC) staining was performed in group 2. Fluorescein isothiocyanate (FITC)-labeled dextran images and endothelial barrier antigen (EBA) studies were performed in group 4. Results : The MR images in group 1 were of good quality. The MR images in group 2 revealed typical findings of acute cerebral infarction. Perfusion defects were noted on the perfusion-weighted images. The MR images in group 3 showed vasogenic edema and contrast enhancement, representing vascular damage. The rats in group 4 had vasogenic edema on the MR images and leakage of dextran on the FITC-labeled dextran image, representing increased vascular permeability. The immune reaction was decreased on the EBA study. Conclusion : Clinical 1.5T MR images using a rat depicted many informative results in the present study. These results can be used in further researches of the BBB using combined clinical MR machines and immunohistochemical examinations.

Protective Effect of Vascular Endothelial Growth Factor on Focal Cerebral Ischemia in Rats

  • Noh, Yong-Rae;Lee, Won-Suk;Choi, Chang-Hwa
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.355-363
    • /
    • 2005
  • This study aimed to investigate the cerebroprotective effect of vascular endothelial growth factor (VEGF) on permanent focal cerebral ischemia in Sprague-Dawley rats. Right middle cerebral artery (MCA) was occluded for 6 and 24 hours by an intraluminal monofilament technique. An open cranial window was made on the right parietal bone for determination of continuous changes in regional cerebral blood flow (rCBF) by laser-Doppler flowmetry. The infarct size was morphometrically determined using the 2,3,5-triphenyltetrazolium chloride technique. Brain edema was determined by measuring brain water content. In normal rats, rCBF was significantly increased by intravenous infusion of VEGF for 10 minutes. The VEGF-induced increase in rCBF was significantly inhibited by pretreatment with suramin, a heparin-binding growth factor inhibitor as well as $N^{\omega}-nitro-L-arginine$, a nitric oxide synthase inhibitor. In focal cerebral ischemic rats, the amplitude of decrease in rCBF during ischemic period was significantly less in VEGF-treated group, compared with that in vehicle-treated group. The cerebral infarct size was reduced by VEGF in a dose-dependent manner. The brain edema formation was dose-dependently reduced by VEGF in 24-hour MCA occlusion group but not in 6-hour MCA occlusion group. It is suggested that VEGF not only improves the rCBF during cerebral ischemic period but also reduces the brain edema formation, and thereby exert a protective effect on focal cerebral ischemia in rats.

  • PDF

Apple pectin, a dietary fiber, ameliorates myocardial injury by inhibiting apoptosis in a rat model of ischemia/reperfusion

  • Lim, Sun Ha;Kim, Mi Young;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.391-397
    • /
    • 2014
  • BACKGROUND/OBJECTIVE: Myocardial cell death due to occlusion of the coronary arteries leads to myocardial infarction, a subset of coronary heart disease (CHD). Dietary fiber is known to be associated with a reduced risk of CHD, the underlying mechanisms of which were suggested to delay the onset of occlusion by ameliorating risk factors. In this study, we tested a hypothesis that a beneficial role of dietary fiber could arise from protection of myocardial cells against ischemic injury, manifested after occlusion of the arteries. MATERIALS/METHODS: Three days after rats were fed apple pectin (AP) (with 10, 40, 100, and 400 mg/kg/day), myocardial ischemic injury was induced by 30 min-ligation of the left anterior descending coronary artery, followed by 3 hr-reperfusion. The area at risk and infarct area were evaluated using Evans blue dye and 2,3,5-triphenyltetrazolium chloride (TTC) staining, respectively. DNA nicks reflecting the extent of myocardial apoptosis were assessed by TUNEL assay. Levels of cleaved caspase-3, Bcl-2, and Bax were assessed by immunohistochemistry. RESULTS: Supplementation of AP (with 100 and 400 mg/kg/day) resulted in significantly attenuated infarct size (IS) (ratio of infarct area to area at risk) by 21.9 and 22.4%, respectively, in the AP-treated group, compared with that in the control group. This attenuation in IS showed correlation with improvement in biomarkers involved in the apoptotic cascades: reduction of apoptotic cells, inhibition of conversion of procaspase-3 to caspase-3, and increase of Bcl-2/Bax ratio, a determinant of cell fate. CONCLUSIONS: The findings indicate that supplementation of AP results in amelioration of myocardial infarction by inhibition of apoptosis. Thus, the current study suggests that intake of dietary fiber reduces the risk of CHD, not only by blocking steps leading to occlusion, but also by protecting against ischemic injury caused by occlusion of the arteries.

Cerebroprotective Effect of Nociceptin on Transient Focal Cerebral Ischemia in Rats

  • Lee Seung Yoon;Lee Won Suk;Choi Chang Hwa
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.201-209
    • /
    • 2005
  • This study aimed to investigate the cerebroprotective effect of nociceptin on transient focal cerebral ischemia in Sprague-Dawley rats by determining the changes in regional cerebral blood flow (rCBF) and the infarct size. Right middle cerebral artery (MCA) was occluded for 2 hours, and thereafter was followed by reperfusion by an intraluminal monofilament technique. An open cranial window was made on the right parietal bone for determination of continuous changes in rCBF by laser-Doppler flowmetry. The infarct size was morphometrically determined using the 2,3,5-triphenyltetrazolium chloride technique. In normal rats, nociceptin ($0.01\~100\;nmol/kg$, Lv.) increased rCBF and decreased cerebral arterial resistance in a dose-dependent manner. Systemic arterial blood pressure was little affected by nociceptin at the doses of 0.01 and 0.1nmol/kg, but dose-dependently reduced at the doses of 1 nmol/kg or more. In transient cerebral ischemic rats, nociceptin ($0.01\~0.1$ nmol/kg, i.p.) significantly attenuated the postischemic cerebral hyperemia, and progressively increased rCBF. The improving effect of nociceptin on the postischemic rCBF response was markedly blocked by pretreatment with $[Nphe^1]nociceptin(1-13)NH_2$ (1 nmol/kg, i.p.), a selective nociceptin receptor antagonist, but not by naloxone ($3{\mu}mol/kg$, i.p.), a selective opioid receptor antagonist. The cerebral infarct size was significantly reduced by nociceptin ($0.01\~0.1$ nmol/kg) administered i.p. 5 min after MCA occlusion in transient cerebral ischemia of 2-hour MCA occlusion and 22-hour reperfusiion. It is suggested that nociceptin improves the postischemic cerebral hemodynamics and thereby has a cerebroprotective effect in transient focal cerebral ischemia.

  • PDF

Influence of Ischemic Duration on Extent of Focal Ischemic Brain Injury Induced by Middle Cerebral Artery Occlusion in Rats (백서의 중대뇌동맥 페쇄에 의한 국소 허혈성 뇌손상의 정도에 미치는 허혈 시간의 영향)

  • 구희정;정경자;김명수;진창배
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.160-166
    • /
    • 2000
  • The present study examined influence of various ischemic duration on extent of focal ischemic brain injury induced by middle cerebral artery occlusion (MCAO) in rats. The MCAO was produced by insertion of a 17 mm silicone-coated 4-0 nylon surgical thread to the origin of MCA through the internal carotid artery for 30, 60, 90, 120 min (transient) or 24 hr (permanent) in male Sprague-Dawley rats under isoflurane anesthesia. Reperfusion in transient MCAO models was achieved by pulling the thread out of the internal carotid artery. Only rats showing neurological deficits characterized by left hemiparesis and/or circling to the left, were included in cerebral ischemic groups. The rats were sacrificed 24 hr after MCAO and seven serial coronal slices of the brain were stained with 2,3,5-triphenyltetrazolium chloride. Infarct size was measured using a computerized image analyzer. Ischemic damage was common in the frontoparietal cortex (somatosensory area) and the lateral segment of the striatum while damage to the medial segment of the striatum depended on the duration of the occlusion. In the 30-min MCAO grouts, however, infarcted region was primarily confined to the striatum and it was difficult to clearly delineate the region since there was mixed population of live and dead cells in the nucleus. Infarct volume was generally increased depending on the duration of MCAO, showing the most severe damage in the permanent MCAO group. However, there was no significant difference in infarct size between the 90-min and 120-min MCAO groups. % Edema also tended to increase depending on the duration of MCAO. The results suggest that the various focal ischemic rat models established in the present study can be used to evaluate in vivo neuroprotective activities of candidate compounds or to elucidate pathophysiological mechanisms of ischemic neuronal cell death.

  • PDF

Neuroprotective Effect of Chronic Intracranial Toxoplasma gondii Infection in a Mouse Cerebral Ischemia Model

  • Lee, Seung Hak;Jung, Bong-Kwang;Song, Hyemi;Seo, Han Gil;Chai, Jong-Yil;Oh, Byung-Mo
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.4
    • /
    • pp.461-466
    • /
    • 2020
  • Toxoplasma gondii is an obligate intracellular protozoan parasite that can invade various organs in the host body, including the central nervous system. Chronic intracranial T. gondii is known to be associated with neuroprotection against neurodegenerative diseases through interaction with host brain cells in various ways. The present study investigated the neuroprotective effects of chronic T. gondii infection in mice with cerebral ischemia experimentally produced by middle cerebral artery occlusion (MCAO) surgery. The neurobehavioral effects of cerebral ischemia were assessed by measurement of Garcia score and Rotarod behavior tests. The volume of brain ischemia was measured by triphenyltetrazolium chloride staining. The expression levels of related genes and proteins were determined. After cerebral ischemia, corrected infarction volume was significantly reduced in T. gondii infected mice, and their neurobehavioral function was significantly better than that of the uninfection control group. Chronic T. gondii infection induced the expression of hypoxia-inducible factor 1-alpha (HIF-1α) in the brain before MCAO. T. gondii infection also increased the expression of vascular endothelial growth factor after the cerebral ischemia. It is suggested that chronic intracerebral infection of T. gondii may be a potential preconditioning strategy to reduce neural deficits associated with cerebral ischemia and induce brain ischemic tolerance through the regulation of HIF-1α expression.

Effects of carnosine and hypothermia combination therapy on hypoxic-ischemic brain injury in neonatal rats

  • Byun, Jun Chul;Lee, Seong Ryong;Kim, Chun Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.8
    • /
    • pp.422-429
    • /
    • 2021
  • Background: Carnosine has antioxidative and neuroprotective properties against hypoxic-ischemic (HI) brain injury. Hypothermia is used as a therapeutic tool for HI encephalopathy in newborn infants with perinatal asphyxia. However, the combined effects of these therapies are unknown. Purpose: Here we investigated the effects of combined carnosine and hypothermia therapy on HI brain injury in neonatal rats. Methods: Postnatal day 7 (P7) rats were subjected to HI brain injury and randomly assigned to 4 groups: vehicle; carnosine alone; vehicle and hypothermia; and carnosine and hypothermia. Carnosine (250 mg/kg) was intraperitoneally administered at 3 points: immediately following HI injury, 24 hours later, and 48 hours later. Hypothermia was performed by placing the rats in a chamber maintained at 27℃ for 3 hours to induce whole-body cooling. Sham-treated rats were also included as a normal control. The rats were euthanized for experiments at P10, P14, and P35. Histological and morphological analyses, in situ zymography, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, and immunofluorescence studies were conducted to investigate the neuroprotective effects of the various interventional treatments. Results: Vehicle-treated P10 rats with HI injury showed an increased infarct volume compared to sham-treated rats during the triphenyltetrazolium chloride staining study. Hematoxylin and eosin staining revealed that vehicle-treated P35 rats with HI injury had decreased brain volume in the affected hemisphere. Compared to the vehicle group, carnosine and hypothermia alone did not result in any protective effects against HI brain injury. However, a combination of carnosine and hypothermia effectively reduced the extent of brain damage. The results of in situ zymography, TUNEL assays, and immunofluorescence studies showed that neuroprotective effects were achieved with combination therapy only. Conclusion: Carnosine and hypothermia may have synergistic neuroprotective effects against brain damage following HI injury.

Investigation of a Photothrombosis Inducing System for an Observation of Transient Variations in an in vivo Rat Brain

  • Oh, Sung Suk;Park, Hye Jin;Min, Han Sol;Kim, Sang Dong;Bae, Seung Kuk;Kim, Jun Sik;Ryu, Rae-Hyung;Kim, Jong Chul;Kim, Sang Hyun;Lee, Seong-jun;Kang, Bong Keun;Choi, Jong-ryul;Sohn, Jeong-woo
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.499-507
    • /
    • 2018
  • For the spatiotemporally aligned observation of photothrombosis induction and transient variations of in vivo brain stroke, we developed a novel photothrombosis inducing system compatible to a magnetic resonance imaging (MRI) system using nonmagnetic stereotaxic equipment. From the spatial point of view, the system provides a more reliable level of reproducibility of the photothrombosis in each brain. From the temporal point of view, from T1- and T2-weighted in vivo MR (magnetic resonance) images, the transient variations such as incidence, location, and size of the thrombosis are measured quantitatively. In addition, the final variation is observed in the ex vivo brain by TTC (Triphenyltetrazolium chloride) staining based on histological assay and utilized for the verification of the MR images. From the experimental result of the rat brain, the proposed system shows more reliable characteristics for transient variations of brain strokes.

Effects of Snake Venom Pharmacopuncture on a Mouse model of Cerebral Infarction

  • Choi, Chul-Hoon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.36 no.3
    • /
    • pp.140-146
    • /
    • 2019
  • Background: This study investigated the effects of Vipera lebetina turanica snake venom (SV) on cerebral infarction induced by middle cerebral artery occlusion in mice. Methods: Following cerebral infarction, SV was injected intravenously or added to BV2 cell culture. Tissue injury was detected using triphenyltetrazolium chloride (TTC) staining, neurological deficit score, NO, ROS, and GSH/GSSG assays, qPCR, Western blot, and cell viability. Results: Cerebral infarction caused by middle cerebral artery occlusion as observed by TTC staining, showed SV inhibited cell death, reducing the number of brain cells injured due to infarction. SV treatment for cerebral infarction showed a significant decrease in abnormal behavior, as determined by the neurological deficit score. The oxidation and inflammation of the cells that had cerebral infarction caused by middle cerebral artery occlusion (NO assay, ROS, GSH/GSSG assay, and qPCR), showed significant protection by SV. Western blot of brain infarction cells showed the expression of iNOS, COX-2, p-IkB-${\alpha}$, P38, p-JNK, p-ERK to be lower in the SV group. In addition, the expression of IkB increased. BV2 cells were viable when treated with SV at $20{\mu}g/mL$ or less. Western blot of BV2 cells, treated with 0.625, 1.5, $2.5{\mu}g/mL$ of SV, showed a significant decrease in the expression of p-IkB-${\alpha}$, p-JNK, iNOS, and COX-2 on BV2 cells induced by LPS. Conclusion: SV showed anti-inflammatory and anti-oxidant effects against cerebral infarction and inflammation.