• Title/Summary/Keyword: Trihalomethane

Search Result 75, Processing Time 0.022 seconds

The Analysis of Trihalomethanes in Water Sample by Purge-and-Trap Gas Chromatograph/Mass Spectrometer and Risk Assessment (퍼지-트랩 기체크로마토그래프/질량분석계에 의한 물시료 중 Trihalomethanes의 분석 및 위해성 평가)

  • Kwak Sunyoung;Pyo Heesoo;Park Song-Ja
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • Recently, significant contamination problems by residual chemicals have occasionally been occurred from major rivers and drinking water in Korea. Therefore, the management for use of them and risk assessment should be more strictly performed. In this study, we have analyzed trihalomethanes in treated water samples taken from water plants located in the region of four major rivers (i.e. Han river, Geum river, Youngsan river and Nakdong river) in Korea for eight years (1997~2004). From the data, we could assess the excess cancer risk by calculating the chronic daily intakes (CDI) multiplied by individual oral slope factors, Q₁*, for the cancer suspected matters such as trihalomethanes, moreover the hazard index which is calculated by dividing the CDI by the acceptable daily reference dose (R/sub f/D) was determined for the risk assessment. As a result, in the case of 95 percentile excess cancer risk, it was shown that the excess cancer risk for dichlorobromomethane in the Nakdong river region is highest among the tested samples as 8.73 x 10/sup -6/. The 95 percentile total hazard index (the sum of individual hazard indices considering R/sub f/D), in addition, was below 1.0 for all samples, and therefore it was assessed that water samples taken from treatment plants of four major rivers are not harmful.

Adsorption Characteristics of Trihalomethanes in a Bi-solute System (이용질계(二溶質系)에서 Trihalomethane 의 흡착특성(吸着特性))

  • Chung, Tai Hak;Ahn, Kwang Seog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.37-44
    • /
    • 1987
  • Adsorption characteristics of chloroform, carbon tetrachloride, and crystal violet were investigated in single-and bi-solute systems. Single-solute adsorption for each solute was well described by Freundlich equation. Severe inhibition was recorded in bi-solute adsorption systems despite of low solute concentration of less than 1 mg/l. Inhibition of chloroform adsorption by carbon tetrachloride, similar compound in chemical structure, was much higher than by crystal violet of which chemical structure is quite different. Highest inhibition was observed at crystal violet adsorption by chloroform. While, inhibition caused by each other was almost equal between chloroform and carbon tetrachloride. Bi-solute adsorption was well described by Friz-Schl${\ddot{u}}$nder model and by much simpler 3 parameter Freundlich equation.

  • PDF

Operation evaluation of DAF pilot plant for water treatment process in Hoedong Reservoir (회동수원지의 정수처리 공정을 위한 DAF pilot plant 운영 성능평가)

  • Maeng, Minsoo;Shahi, Nirmal Kumar;Kim, Donghyeun;Shin, Gwyam;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.463-471
    • /
    • 2020
  • A 1,000 ㎥/d DAF(dissolved air flotation) pilot plant was installed to evaluate the performance of the floating process using the Nakdong River. Efficiency of various DAF operations under different conditions, such as hydraulic loading rate, coagulant concentration was evaluated in the current research. The operation conditions were evaluated, based on the removal or turbidity, TOC(total organic carbon), THMFP(trihalomethane formation potential), Mn(manganese), and Al(aluminum). Also, particle size analysis of treated water by DAF was performed to examine the characteristics of particles existing in the treated water. The turbidity removal was higher than 90%, and it could be operated at 0.5 NTU or less, which is suitable for the drinking water quality standard. Turbidity, TOC, and THMFP resulted in stable water quality when replacing the coagulant from alum to PAC(poly aluminum chloride). A 100% removal of Chl-a was recorded during the summer period of the DAF operations. Mn removal was not as effective as where the removal did not satisfy the water quality standards for the majority of the operation period. Hydraulic loading of 10 m/h, and coagulant concentrations of 40 mg/L was determined to be the optimal operating conditions for turbidity and TOC removal. When the coagulant concentration increases, the Al concentration of the DAF treated water also increases, so coagulant injection control is required according to the raw water quality. Particle size distribution results indicated that particles larger than 25 ㎛ showed higher removal rates than smaller particles. The total particel count in the treated water was 2,214.7 counts/ml under the operation conditions of 10 m/h of hydraulic loading rate and coagulant concentrations of 60 mg/L.

Prediction of Trihalomethanes Formation Potential of Dissolved Organic Matter with Various Sources Using Differential Fluorescence 3D-Excitation-Emission Matrix (EEM) (차등 3차원 형광 여기-방출 매트릭스를 이용한 다양한 기원의 용존 유기물질 트리할로메탄 생성능 예측)

  • Bae, Kyung Rok;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.63-71
    • /
    • 2022
  • This study aimed to maximize the potential of fluorescence 3D excitation-emission matrix (EEM) for predicting the trihalomethane formation potential (THMFP) of DOM with various sources. Fluorescence spectroscopy is a useful tool for characterizing dissolved organic matter (DOM). In this study, differential spectroscopy was applied to EEM for the prediction of THMFP, in which the difference between the EEM before and after chlorination was taken into account to obtain the differential EEM (DEEM). For characterization of the original EEM or the DEEM, the maximum intensities of several different fluorescence regions in EEM, fluorescence EEM regional integration (FRI), and humification index (HIX) were calculated and used for the surrogates for THMFP prediction. After chlorination, the fluorescence intensity decreased by 77% to 93%. In leaf-derived and effluent DOM, there was a significant decrease in the protein-like peak, while a more pronounced decrease was observed in the humic-like peak of river DOM. In general, leaf-derived and effluent DOM exhibited a relatively lower THMFP than the river DOM. Our results were consistent with the high correlations between humic-like fluorescence and THMFP previously reported. In this study, HIX (r= 0.815, p<0.001), FRI region V (r=0.727, p<0.001), humic-like peak (r= 0.827, p<0.001) from DEEM presented very high correlations with THMF P. When the humic-like peak intensity was converted to a logarithmic scale, a higher correlation was obtained (r= 0.928, p<0.001). This finding suggests that the humic-like peak in DEEM can serve as a universal predictor for THM formation of DOM with various origins.

Demonstration of Low-carbon Pre-oxidation Technology for Algae Using Sodium Permanganate (과망간산나트륨을 활용한 조류 대응 저탄소 전산화기술 실증화 연구)

  • Junsoo, Ha;Daniel Sangdu, Hur;Chaieon, Im;Donghee, Jung;Youngseong, Lim;Jinkyong, Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • This paper is a result of research conducted on the 800,000 m3/d capacity of A Water Treatment Plant (WTP) and 400,000 m3/d capacity of B WTP plant in operation in the Nakdong River region. We evaluated the effect of algae broom on the WTP operation based on the running data of both WTP and the data on the pre-oxidation process field test for algae control using sodium permanganate (SPM) at the B WTP. The study results showed that during the algal bloom period, the coagulant dose increased by 102% in A WTP and 58% in B WTP, respectively, and the chlorine dose also increased by 38% and 29%, respectively, which may affect Total trihalomethane (THM) production. Data such as algal populations and Chl-a, residual chlorine and THM, algal populations, and ozone dose appeared also highly correlated, confirming that algal broom affects WTP operations, including water quality and chemical dosage. As a result of the field test of B WTP, THMs appeared lower than that of the control, suggesting the possibility of the SPM pre-oxidation process as an alternative to algae-related water quality management. Furthermore, in terms of GHG emissions due to energy consumption, it was observed that the pre-oxidation process using SPM was approximately 10.8%, which is a very low ratio compared to the pre-ozonation process. Therefore, these results suggest that the SPM pre-oxidation process can be recommended as an alternative to low-carbon water purification technology.

Comparative Study on Removal Characteristics of Disinfection By-products by Air Stripping and Flotation Processes (탈기와 부상 공정에 의한 소독부산물의 제거특성에 관한 비교 연구)

  • Cha, Hwa-Jeong;Won, Chan-Hee;Lee, Kang-Hag;Oh, Won-Kyu;Kwak, Dong-Heui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.513-520
    • /
    • 2016
  • It is well known that volatile compounds including disinfection by-products as well as emissive dissolved gas in water can be removed effectively by air stripping. The micro-bubbles of flotation unit are so tiny as microns while the diameter of fine bubbles applied to air stripping is ranged from hundreds to thousands of micrometer. Therefore, the micro-bubbles in flotation can supply very wide specific surface area to transfer volatile matters through gas-liquid boundary. In addition, long emission time also can be gained to emit the volatile compound owing to the slow rise velocity of micro-bubbles in the flotation tank. There was a significant difference of the THMs species removal efficiency between air stripping and flotation experiments in this study. Moreover, the results of comparative experiments on the removal characteristics of THMs between air stripping and flotation revealed that the mass transfer coefficient, $K_La$ showed obvious differences. To overcome the limit of low removal efficiency of dissolved volatile compounds such as THMs in flotation process, the operation range of bubble volume concentration is required to higher than the operation condition of conventional particle separation.

Characteristics of Chlorination Byproducts Formation of Amino Acid Compounds (아미노산 성분에서의 염소 소독부산물 생성 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Bae, Sang-Dae;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.332-340
    • /
    • 2009
  • This study was conducted to analyze and determine formation potentials for chlorination disinfection by-products (DBPs) from twenty amino acid compounds with or without $Br^-$. Two of twenty amino acid compound were tryptophan and tyrosine that were relatively shown high for formation of trihalomethanes (THMs)/dissolved organic carbon (DOC) whether or not $Br^-$ presented. Other 18 compounds were shown low for formation of THMs/DOC whether or not $Br^-$ presented. Five amino acid compounds that were tryptophan, tyrosine, asparagine, aspartic acid and histidine were shown high for formation of haloacetic acids (HAAs)/DOC whether or not $Br^-$ presented. Although formation of dichloroacetic acid (DCAA) was dominated in asparagine, aspartic acid and histidine, trichloroacetic acid (TCAA) was dominated in tryptophan and tryptophan. The formation of haloacetnitriles (HANs)/DOC whether or not $Br^-$ presented was high in Aspartic acid, histidine, asparagine, tyrosine and tryptophan. Specially, aspartic acid was detected 660.2 ${\mu}$g/mg (HAN/DOC). Although the formation of chloralhydrate (CH)/DOC was shown high in asparagine, aspartic acid, histidine, methionine, tryptophan and tyrosine, the formation of Chloropicrin (CP)/DOC was low (1 ${\mu}$g/mg) in twenty amino acid compounds. The formations of THM, HAA and HAN were also investigated in functional groups of amino acids. The highest formation of THM was shown in amino acids compounds (tryptophan and tyrosine) with an aromatic functional group. Highest, second-highest, third-highest and fourth-highest functional groups for formation of HAA were aromatic, neutral, acidic and basic respectively. In order of increasing functional groups for formation of HAN were acidic, basic, neutral and aromatic.

Characteristics of Disinfection and Removal of 2-MIB Using Pulse UV Lamp (펄스 UV 램프를 이용한 미생물 소독 및 2-MIB 제거 특성)

  • Ahn, Young-Seog;Yang, Dong-Jin;Chae, Seon-Ha;Lim, Jae-Lim;Lee, Kyung-Hyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.69-75
    • /
    • 2009
  • The characteristics of disinfection and organic removal were investigated with pulse UV lamp in this study. The intensity and emission wavelength of pulse UV Lamp were compared with low pressure UV lamp. The emission spectrum range of pulse UV lamp was between 200 and 400 nm while the emission spectrum of low pressure UV lamp was only single wavelength of 254nm. 3 Log inactivation rate of B. subtilis spore by pulse UV and low pressure UV irradiation was determined as $44.71mJ/cm^2$ and $57.7mJ/cm^2$, respectively. This results implied that wide range of emission spectrum is more effective compared to single wavelength emission at 254nm. 500ng/L of initial 2-MIB concentration was investigated on the removal efficiency by UV only and $UV/H_2O_2$ process. The removal efficiency of UV only process achieved approximately 80% at $8,600mJ/cm^2$ dose. 2-MIB removal rate of $UV/H_2O_2$ (5 mg/L $H_2O_2$) process was 25 times increased compared to UV only process. DOC removal efficiency for the water treatment plant effluent was examined. The removal efficiency of DOC by UV and $UV/H_2O_2$ was no more than 20%. Removal efficiency of THMFP(Trihalomethane Formation Potential), one of the chlorination disinfection by-products, is determined on the UV irradiation and $UV/H_2O_2$ process. Maximum removal efficiency of THMFP was approximately 23%. This result indicates that more stable chemical structures of NOM(Natural Organic Matter) than low molecule compounds such as 2-MIB, hydrogen peroxide and other pollutants affect low removal efficiency for UV photolysis. Consequently, pulse UV lamp is more efficient compared to low pressure lamp in terms of disinfection due to it's broad wavelength emission of UV. Additional effect of pulse UV is to take place the reactions of both direct photolysis to remove micro organics and disinfection simultaneously. It is also expected that hydrogen peroxide enable to enhance the oxidation efficiency on the pulse UV irradiation due to formation of OH radical.

Concentration distributions and formation characteristics of trihalomethanes in drinking water supplies to rural communities (농촌지역 마을상수 중 trihalomethanes의 농도 분포 및 생성 특성)

  • Kim, Hekap;Kim, Seyoung
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.58-64
    • /
    • 2015
  • This study aimed to investigate the concentration distributions and formation characteristics of trihalomethanes (THMs) in drinking water supplies to rural communities. Water samples were collected twice from 40 rural households located on the outskirts of Chuncheon city of Gangwon Province in the summers of 2010 and 2011, and urban drinking water samples were collected from 20 faucets during the same period in 2011 for comparison purpose. Water temperature, pH, and residual chlorine (total and free) concentrations were measured in the field, and samples were analyzed for dissolved organic carbon (DOC) and THM concentrations in the laboratory. The average DOC concentrations in rural water samples were not greatly different between groundwater (n = 20) and surface water (n = 20) which were used as sources for drinking water (1.81 vs. 1.91 mg/L). However, the average concentrations of total THMs (TTHMs) in groundwater ($9.77{\mu}g/L$) were much higher than those in surface water ($2.85{\mu}g/L$) and similar to those in urban drinking water samples ($10.8{\mu}g/L$). Unlike urban water supply, rural water (particularly groundwater) contained more brominated THM species such as dibromochloromethane (DBCM), suggesting its relatively high content of bromide ion (Br-). This study showed that rural water supplies have different THM formation characteristics from urban water supplies, probably due to their differences in source water quality properties.

The Formation Characteristics of THMs and HAAs in Chlorination of Raw Water of Different Organic Matter Characteristics (상수원수의 유기물 특성에 따른 염소처리시 THMs 및 HAAs의 생성특성)

  • Oh, Sun-Mi;Kim, Seung-Hyun;Lee, Min-Gyu;Xu, Mei-Lan;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.785-797
    • /
    • 2006
  • The formation characteristics of trihalomethanes (THMs) and haloacetic acids (HAAs) were investigated in chlorination of raw water of different organic mallet characteristics. The samples used in this study were hydrophobic (N-HPO) and hydrophilic fraction (N-HPI) (which were concentrated and separated from Nakdong river water), and humic acid (HA) (which is known as a strong hydrophobic acid) as a reference organic matter, the specific UV absorbance (SUVA) of which was 2.19, 1.15 and 7.92, respectively. With increasing chlorine contact time, THMFP and HAAFP (the formation potential of THMs and HAAs) increased, but their increase was different depending on the organic mallet characteristics (i.e., for N-HPI, THMFP was higher than HAAFP, but the inverse result was obtained for N-HPO and HA and the ratio between them was greater for HA), and the mainly formed chemical species were CHCI$_3$ in case of THMs and dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in case of HAAs for N-HPO and HA (and the ratios of CHCI$_3$ to total THMs and DCAA and TCAA to total HAAs for HA were higher than those for N-HPO), but for N-HPI, the ratio of brominated THMs was a little higher than that of CHCI$_3$ and the ratio of DCAA and TCAA to total HAAs was lower than that of N-HPO, although they are main chemical species in case of HAAs. Comparing THMFP and HAAFP with the increase in bromide concentration added with those in not adding it, the former increased greatly and its increase was higher for the organic mallet with stronger hydrophobicity, but the latter was lower for N-HPO and N-HPI and was similar for HA. The main chemical species with increasing bromide concentration were CHBt$_3$ in case of THMs regardless of organic matter characteristics, and dibromoacetic acid (DBAA) for N-HPO and N-HPI, DBAA and tribromoacetic acid (TBAA) for HA in case of HAAs. With increasing reaction temperature and pH, THMFP and HAAFP increased for the former, but for the latter, THMFP increased and HAAFP decreased, although the rate of increase or decrease was different with organic mallet characteristics.