• Title/Summary/Keyword: Trier

Search Result 22, Processing Time 0.018 seconds

The Giant Magnetoresistance Properties of CoFe/Cu/NiFe Pseudo Spin Valve (CoFe/Cu/NiFe Pseudo스핀밸브의 자기저항 특성)

  • Choi, W.J.;Hong, J.P.;Kim, T.S.;Kim, K.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.212-217
    • /
    • 2002
  • The pseudo spin valve with a structure of Tl/CoFe(t $\AA$)/Cu(30 $\AA$)/NiFe(50 $\AA$)/Ta, showing giant magnetoresistance properties by utilizing coercivity difference between only two soft ferromagnetic layers were produced by d.c UHV magnetron sputtering system. In pseudo spin valve Ta/CoFe/Cu/NiFe/Ta, the magnetic and magnetoresistance properties with change of CoFe thickness were investigated. When the thickness of CoFe was 60 $\AA$, a typical MR curve of pseudo spin valve structure was obtained, showing MR ratio of 3.8 cio and the coercivity difference of 27.4 Oe with a sharp change of hard layer switching. When the CoFe thickness was varied from 20 to 100 $\AA$, coercivity difference between two layers was increased to 40 $\AA$. and decreased to 100 $\AA$ gradually. It is thought the change in coercivity of hard layer was due to the crystallinity and magnetostriction of thin CoFe layer. In order to improve the MR property in CoFe/Cu/NiFe trier layer structure, CoFe layer with change of 2-20 $\AA$ thick was inserted between Cu and NiFe. When the thickness of CoFe was 10 $\AA$, MR ratio was 6.7%, showing excellent MR property. This indicates 50 % higher than that of CoFe/Cu/NiFe pseudo spin valve.

Analysis of Broken Rice Separation Efficiency of a Laboratory Indented Cylinder Separator

  • Kim, Myoung Ho;Park, Seung Je
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.95-102
    • /
    • 2013
  • Purpose: Using a laboratory indented cylinder separator, broken rice separation experiments were conducted and the characteristics of the separation process were studied to provide information for developing a prototype indented cylinder broken rice separator. Methods: Rice (Ilmi variety) milled in a local RPC was used for the experiment. Rice kernels were classified into four groups according to their length l; whole kernels (I > 3.75 mm), semi-whole kernels (2.5 < I < 3.75 mm), broken kernels (1.75 < I < 2.5 mm), and foreign matters (I < 1.75 mm). A laboratory grain cleaner, Labofix '90 (Schmidt AG, Germany) was used for the experiments. Experiments were designed as a $4{\times}4$ factorial arrangement in randomized blocks with three replications. Cylinder rotational speeds (17, 34, 51, 68 rpm) and trough angles (15, 37.5, 60, $82.5^{\circ}$) were the two factors and feed rates (25, 50 kg/h), indent shapes (Us, $S_1$ type), and indent sizes (2.5, 3.75 mm) were treated as the blocks. Two 125 g samples and one 125 g sample were taken at the cylinder outlet and from the trough, respectively. The whole, semi-whole, and broken kernel weight ratio of the samples and feed was determined by a rice sizing device. From these weight ratios, purities, degrees of extraction and coefficient of separation efficiency were calculated. Results: Trough angle, cylinder speed, and their interaction on the coefficient of separation efficiency were statistically significant. Cylinder speed of 17, 34, and 51 rpm made the most effective separation when the trough angle was $15^{\circ}$ or $37.5^{\circ}$, $60^{\circ}$, and $82.5^{\circ}$, respectively. Maximum values of coefficient of separation efficiency were in the range of 60 to 70% except when the indent size was 2.5 mm and were recorded for the combinations of low cylinder speed (17 rpm) with medium trough angle ($37.5^{\circ}$ or $60^{\circ}$). Indent shape did not appear to make any noticeable difference in separation efficiency. Conclusions: Due to the interaction effect, the trough angle needs to be increased appropriately when an increase in cylinder speed is made if a rapid drop of effectiveness of separation should be avoided. In commercial applications, $S_1$ type indents are preferred because of their better manufacturability and easier maintenance. For successful separation of broken kernels, the indent size should be set slightly bigger than the actual sizes of broken kernels: an indent size of 3.0 mm for separating broken kernels shorter than 2.5 mm.