• Title/Summary/Keyword: Trichoderma harzianum

Search Result 117, Processing Time 0.021 seconds

Characteristics of microorganism isolated from Cotton Waste Media for the Oyster Mushroom Cultivation (느타리버섯 균상재배 중 배지에서 분리한 미생물의 특성)

  • Lee, Chan-Jung;Jhune, Chang-Sung;Cheong, Jong-Chun;Oh, Jin-A;Han, Hye-Su;Um, Na-Na
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.120-124
    • /
    • 2010
  • This study was carried out to investigate interaction between mushroom mycelium and microorganisms in cotton waste media for the shelf cultivation of oyster mushroom. Two oyster mushroom farms was selected for this experiment. One was good mushroom farm (farmhouse I) and the other failed mushroom farm (farmhouse II). In farmhouse I, the inhibition microorganisms were higher toward the end of growth stage than the early stage, but the result of farmhouse II was opposite. Effects of the mycelium growth on plate culture showed same results on mushrooms as the earlier one. And the mycelium growth was influenced by secretory materials of microorganisms. Among of the isolates, Only few microorganism had inhibitory effects on either P. tolaasii or T. harzianum causing the disease of oyster mushrooms. But more microorganisms had inhibition effects on P. agarici.

Differential Selection by Nematodes of an Introduced Biocontrol Fungus vs. Indigenous Fungi in Nonsterile Soil

  • Kim, Tae Gwan;Knudsen, Guy R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.831-838
    • /
    • 2018
  • Trophic interactions of introduced biocontrol fungi with soil animals can be a key determinant in the fungal proliferation and activity. This study investigated the trophic interaction of an introduced biocontrol fungus with soil nematodes. The biocontrol fungus Trichoderma harzianum ThzID1-M3 and the fungivorous nematode Aphelenchoides sp. (10 per gram of soil) were added to nonsterile soil, and microbial populations were monitored for 40 days. Similar results were obtained when the experiment was duplicated. ThzID1-M3 stimulated the population growth of indigenous nematodes (p < 0.05), regardless of whether Aphelenchoides sp. was added. Without ThzID1-M3, indigenous nematodes did not increase in number and the added Aphelenchoides sp. nematodes almost disappeared by day 10. With ThzID1-M3, population growth of nematodes was rapid between 5 and 10 days after treatment. ThzID1-M3 biomass peaked on day 5, dropped at day 10, and then almost disappeared at day 20, which was not influenced by the addition of nematodes. In contrast, a large quantity of ThzID1-M3 hyphae were present in a heat-treated soil in which nematodes were eliminated. Total fungal biomass in all treatments peaked on day 5 and subsequently decreased. Addition of nematodes increased the total fungal biomass (p < 0.05), but ThzID1-M3 addition did not affect the fungal biomass. Hyphae of total fungi when homogenously distributed did not support the nematode population growth; however, hyphae of the introduced fungus did when densely localized. The results suggest that soil fungivorous nematodes are an important constraint on the hyphal proliferation of fungal agents introduced into natural soils.

Evaluation of Certain Plant Extracts and Antagonists Against Fusarium solani and Alternaria tenuissima, the Incitants of Root Rot and Die-Back Diseases of Mulberry

  • Seetha, Ramulu J.;Raja, Gopal Reddy C.;Ramanjaneyulu, R.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • The studies have been conducted to control the soil borne fungal pathogens viz, Fusarium solani (Mart) Sacc. and Alternaria tenuissima the incitants of root rot and die-back diseases on mulberry stem cuttings planted in the mulberry nurseries and also in established mulberry gardens ten plant extracts with 10% concentration except Lantana camara (undiluted) were tested through poisoned food technique and four biofungicides were also screened by dual culture method under in vitro conditions. Plant extract of Prosopis juliflora showed the maximum inhibition on the mycelial growth (81.2% over A. tenuissima and 80.0% over F. solani) and followed by L. camara (66.7% over A. tenuissima and 68.9% over F. solani). Among the antagonists Pseudomonas fluorescens and Trichoderma viride showed maximum inhibition on the mycelial growth of both pathogenic fungi. The promising plant extracts (P. juliflora and L. camara) and antagonists (P. fluorescens and T. viride) were tested against both the pathogenic fungi under in vivo conditions along with the existing popular chemical Mancozeb. All the tested plant products and bio-fungicides showed inhibitory effect on both fungi. But the maximum survival percentage of mulberry cuttings was recorded in the treatment with T. viride (95% against F. solani and 90% against A. tenuisssima) followed by P. fluorescens (90% against both fungi) and T. harzianum (80% against F. solani and 85% against A. tenuisssima). Incase of the treatments with plant extracts and chemical fungicide the P. juliflora (60% against F. solani and 55% against A. tenuisssima) showed higher survival percentage and followed by L. camara (55% against F. solani and 50% against A. tenuisssima) and Mancozeb (55% against both fungi). In case of control only 10% of survival was recorded in F. solani inoculated cuttings and 15% survival in A. tenuissima inoculated cuttings.

Integration of Bological and Chemical Methods for the Control of Pepper Gray Mold Rot Under Commercial Greenhouse Conditions

  • Park, Seon-Hee;Bae, Dong-Won;Lee, Joon-Taek;Chung, Sung-Ok;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.162-167
    • /
    • 1999
  • Integration of microbial antagonists with fungicides was tried to control the gray mold caused by Botrytis cinerea on pepper in greenhouse conditions and to reduce fungicide uses. All of the selected bacterial antagonists, Bacillus amyloliquefaciens BL3, Paenibacillus polymyxa BL4, and Pseudomonas putida Cha94, completely inhibited the conidial germination of B. cinerea until 30 days after treatment. However, bacterial colonization of pepper phylloplane was poor in BL4, while the other bacterial isolates and the fungal antagonist Trichoderma harzianum TM colonized well on the phylloplane, maintaining the population density of 104-105 cfu/g until 15 days after microbial treatments. Out of 13 kinds of selected fungicides used for gray mold diseases, polyoxin B and BKF 1995 showed the most discriminatory activity on the fungal growth between B. cinerea and TM. TM grew readily on the media containing those fungicides, while B. cinerea showed poor or no mycelial growth on them. The selected fungicides and antagonists alone reduced incidence of gray mold on pepper, showing disease indices of about 2.4 to 3.0, while its was increased up to 4.2 in the untreated control. Alternate treatments with the antagonists and 2-fold diluted fungicides inhibited the disease incidence as much as the antagonists or fungicides alone, and reduced the secondary inoculum more than the single treatments. This suggests that integration of antagonists and fungicides may be an efficient way to reduce fungicide sprays with reliable control efficacy of the disease. However, there was not much difference in the early and mid-term disease progress among the treatments and the untreated control, probably due to extremely favorable environmental conditions for the disease development in this experiment.

  • PDF

Efficacy of Newer Molecules, Bioagents and Botanicals against Maydis Leaf Blight and Banded Leaf and Sheath Blight of Maize

  • Malik, Vinod Kumar;Singh, Manjeet;Hooda, Karambir Singh;Yadav, Naresh Kumar;Chauhan, Prashant Kumar
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.121-125
    • /
    • 2018
  • Maize (Zea mays L.; 2N=20) is major staple food crop grown worldwide adapted to several biotic and abiotic stresses. Maydis leaf blight (MLB) and banded leaf and sheath blight (BLSB) are serious foliar fungal diseases may cause up to 40% and 100% grain yield loss, respectively. The present studies were undertaken to work out the efficacy of chemicals, botanicals and bioagents for the management of MLB and BLSB under field condition for two seasons Kharif 2014 and 2015. Five molecules (propiconazole 25 EC, hexaconazole 25 EC, carbendazim 50 WP, mancozeb 75 WP and carbedazim 12 WP + mancozeb 63 WP), two bioagents i.e. Trichoderma harzianum and T. viridae and three botanicals namely azadirachtin, sarpagandha and bel pathar were tested for their efficacy against MLB. Eight newer fungicides viz., difenconazole 250 SC, hexaconazole 5 EC, carbendazim 50WP, validamycin 3 L, tebuconazole 250 EC, trifloxystrobin 50 WG + tebuconazole 50 WG, azoxystrobin 250 EC and pencycuron 250 SC were evaluated against BLSB. Analysis revealed significant effects of propiconazole at 0.1%, carbendazim 12 WP + mancozeb 63 WP at 0.125% and sarpagandha leaves at 10% against MLB pathogen, whereas validamycin at 0.1% and trifloxystrobin 25 WG + tebuconazole 50 WG at 0.05% were found effective against BLSB. The slow rate of disease control virtually by the bioagents might have not shown instant effect on plant response to the yield enhancing components. The identified sources of management can be used further in strengthening the plant protection in maize against MLB and BLSB.

Integrated Management of Foot Rot of Lentil Using Biocontrol Agents under Field Condition

  • Hannan, M.A.;Hasan, M.M.;Hossain, I.;Rahman, S.M.E.;Ismail, Alhazmi Mohammed;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.883-888
    • /
    • 2012
  • The efficacy of cowdung, Bangladesh Institute of Nuclear Agriculture (BINA)-biofertilizer, and Bangladesh Agricultural University (BAU)-biofungicide, alone or in combination, was evaluated for controlling foot rot disease of lentil. The results exhibited that BINA-biofertilizer and BAU-biofungicide (peat soil-based Rhizobium leguminosarum and black gram bran-based Trichoderma harzianum) are compatible and have combined effects in controlling the pathogenic fungi Fusarium oxysporum and Sclerotium rolfsii, which cause the root rot of lentil. Cowdung mixing with soil (at 5 t/ha) during final land preparation and seed coating with BINA-biofertilizer and BAU-biofungicide (at 2.5% of seed weight) before sowing recorded 81.50% field emergence of lentil, which showed up to 19.85% higher field emergence over the control. Post-emergence deaths of plants due to foot rot disease were significantly reduced after combined seed treatment with BINA-biofertilizer and BAU-biofungicide. Among the treatments used, only BAU-biofungicide as the seed treating agent resulted in higher plant stand (84.82%). Use of BINA-biofertilizer and BAU-biofungicide as seed treating biocontrol agents and application of cowdung in the soil as an organic source of nutrient resulted in higher shoot and root lengths, and dry shoot and root weights of lentil. BINA-biofertilizer significantly increased the number of nodules per plant and nodules weight of lentil. Seeds treating with BAU-biofungicide and BINA-biofertilizer and soil amendment with cowdung increased the biomass production of lentil up to 75.56% over the control.

Development of Optimal Culture Media for the Stable Production of Mushroom (버섯의 안정적 생산을 위한 최적배지의 개발)

  • Gal, Sang-Wan;Lee, Sang-Won
    • Applied Biological Chemistry
    • /
    • v.45 no.2
    • /
    • pp.71-76
    • /
    • 2002
  • Several antagonistic bacteria, SD-1, 4, 10, 11, 14, 15, and 16, which have strong CMCase and amylase activities, were isolated from the fermented mushroom media. Among them, SD-1, 10, 11, and 15 have strong antibacterial activities against the mushroom pathogenic bacteria Pseudomonas sp., and SD-1, 10, 11, 14, and 16 have strong antifungal activities against the mushroom pathogenic fungi, Trichoderma sp. SD-14, 15, and 16 did not inhibit the growth of mushroom Pleurotus eryngii ASI-2302, and Pleurotus ostreatus ASI-2042 and ASI-2180. When the culture broth mixture of the seven bacterial strains was applied to the mushroom media, the growths of pathogens, Pseudomonas sp. and Trichoderma sp., were inhibited.