• Title/Summary/Keyword: Trichlorosilane

Search Result 23, Processing Time 0.025 seconds

Spectrophotometric Determination of Traces of Boron in Semiconductor-grade Trichlorosilane (반도체급 삼염화실란중의 극미량 붕소의 분광 광도법적 측정)

  • Dong Kwon Kim;Hee Young Kim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.534-538
    • /
    • 1991
  • A procedure for spectrophotometric determination of traces of boron in high-purity trichlorosilane (TCS) is proposed utilizing an adsorptive separation. NaCl is chosen as an Lewis base adsorbent which forms a complex with boron compounds in TCS, and is well dissolved in sulfuric acid-quinalizarin color-forming agent without causing an interference in colorimetric measurements. The proposed adsorptive separation method is free from the formation of silica gel and gas bubbles during the analysis of TCS. The method reveals that the boron concentration in a semiconductor grade TCS is 6.1 ${\mu}$g/l within the standard deviation of ${\pm}$20%. On the other hand, the boron concentration of the purified TCS which is separated from NaCl-boron compounds complex is reduced to 0.2 ${\mu}$g/l, showing the efficient applicability of NaCl to the adsorptive separation. The effectiveness of NaCl for the removal of boron in TCS purification is also described in comparison with other well-known adsorbents.

  • PDF

Roll-to-Roll (R2R) Fabrication of Micro Pillar Array for Biomimetic Functionalization of Surface

  • Jeon, Deok-Jin;Lee, Jun-Young;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.54-59
    • /
    • 2014
  • The roll-to-roll (R2R) fabrication method to make micro-scale pillar arrays for biomimetic functionalization of surfaces is presented. Inspired by the micro-structure of plants in nature, a surface with a synthetic micro-scale pillar array is fabricated via maskless photolithography. After the surface is SAM (self-assembled monolayer) coated with trichlorosilane in a vacuum desiccator, it displays a hydrophobic property even in R2R replicas of original substrate, whose properties are further characterized using various pitches and diameters. In order to perform a comparison between the original micro-pattern and its replicas, surface morphology was analyzed using scanning electron microscopy and wetting characteristics were measured via a contact angle measurement tool with a $10{\mu}L$ water droplet. Efficient roll-to-roll imprinting for a biomimetic functionalized surface has the potential for use in many fields ranging from water repelling and self-cleaning to microfluidic chips.

Self-assembled moolayers as anti-stiction coating for imprint (임프린트를 위한 자기조립단분자 이형코팅)

  • Lee, Sang-Moon;Ra, Seung-Hyun;Cho, Jae-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.219-219
    • /
    • 2007
  • Ni stamper위에 100nm의 Si 코팅후 자기조립 단문자막(SAM)을 액상 코팅방식으로 형성 하였고, 내구성 및 열적 안정성을 검증하기 위해 반복적인 이형 및 압력인가test가 실시하였다. 20 회 이상의 이형실험을 통해 열적, 기계적 안정성을 확인하고, 접촉각 측정을 통해 이형특성의 안정성도 고찰하였다. 이를 Imprint공법을 적용 fine pattern의 구조물을 얻을수 있었다. SAM코팅은 TRICHLOROSILANE을 사용하였으며 Hexane과 1000:1의 비율로 섞어서 stirrer에서 mixing하는 방식을 사용했으며, UV-ozone처리를 통한 이형성 제거 효과도 관찰하였다.

  • PDF

Large area imprint process using isostatic pressure

  • Lee, Sang-Mun;Mun, Jin-Seok;Gwak, Jeong-Bok;Na, Seung-Hyeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.209-209
    • /
    • 2007
  • Ni stamper위에 100nm의 Si 코팅후 자기조립 단분자막(SAM)을 액상 코팅방식으로 형성 하였고, 내구성 및 열적 안정성을 검증하기 위해 반복적인 이형 및 압력인가 test가 실시하였다. 20회 이상의 이형실험을 통해 열적, 기계적 안정성을 확인하고, 접촉각 측정을 통해 이형특성의 안정성도 고찰하였다. 이를 Imprint공법을 적용 fine pattern의 구조물을 얻을 수 있었다. SAM코팅은 TRICHLOROSILANE을 사용하였으며 Hexane과 1000:1의 비율로 섞어서 stirrer에서 mixing하는 방식을 사용했으며, UV-ozone처리를 통한 이형성 제거 효과도 관찰하였다.

  • PDF

Hydrolytic stability of novel silane coupling agents with phenyl group

  • NiHeil, T.;Kuratal, S.;Ohashi, K.;Omotol, N.;Kondo, Y.;Memoto, K.U;Yoshino, N.;Teranaka, T.
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.605-605
    • /
    • 2003
  • Novel silane coupling agents containing hydrophobic phenyl group 3-(3-methoxy-4-methacryloyloxyphenyl) propyl-trimethoxysilane(p-MPS), -triisocyanatesilane (p-MBI), -trichlorosilane (p-MBC) were synthesized. The bonding durability of these silanes against water immersion and thermal stress was investigated. 3-methacryloyloxypropyltrimethoxysilane (3-MPG) was used as a control. The glass modified with those silanes at a concentration of 2wt% were kept for 3 minutes at $120^{\circ}C$, and then were bonded to the heaped metal with self-cured resin composite.(omitted)

  • PDF

Spectrophotometric Determination of Traces of Phosphorus in Semiconductor-grade Trichlorosilane (반도체급 삼염화실란 중의 극미량 인의 분광광도법적 정량)

  • Dong Kwon Kim;Myoung Wan Han;Hee Young Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.255-260
    • /
    • 1992
  • A procedure for spectrophotometric determination of traces of phosphorus(P) in high-purity trichlorosilane(TCS) is proposed using an adsorptive separation. $PCl_3$, which is a dominant P impurity within TCS, is first oxidized by oxygen to a stable form as $POCl_3$. $AlCl_3$ is selected as an adsorbent which forms a thermally stable complex with $POCl_3$ in TCS and can be well dissolved in aqueous ethanol solution. The proposed adsorptive separation method is free from the formation of silica gel and gas bubbles during the colorimetric analysis of TCS. The method reveals that the P concentration in a semiconductor-grade TCS is 5.32 ${\mi}g/l$ within the standard deviation of ${\pm}$ 17%. On the other hand, the P concentration of the purified TCS which is separated from the $AlCl_3$${\cdot}$$POCl_3$ complex is reduced to be less than 0.15 ${\mi}g/l$, showing the efficient applicability of $AlCl_3$ to the wet chemical analysis. The proposed method is also tested to verify the effectiveness of other well-known adsorbents.

  • PDF

Ceramic Ink-jet Printing on Glass Substrate Using Oleophobic Surface Treatment

  • Lee, Ji-Hyeon;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.75-80
    • /
    • 2016
  • Ink-jet printing has become a widespread technology with the society's increase in aesthetic awareness. Especially, ink-jet printing using glazed ceramic ink can offer huge advantages including high quality decoration, continuous processing, glaze patterning, and direct reproduction of high resolution images. Recently, ceramic ink-jet printing has been rapidly introduced to decorate the porcelain product and the ceramic tiles. In this study, we provide an effective method to apply ceramic ink-jet decorations on the glass substrates using a oleophobic coating with perfluorooctyl trichlorosilane. The ink-jet printed patterns were much clearer on the oleophobically coated glass surface than the bare glass surface. The contact angle of the ceramic ink was maximized to the value of $64.0^{\circ}$ on the glass surface, when it was treated with 1 vol% PFTS solution for 1 min. The effects of the printing conditions and firing process on the ink-jet printed patterns on the oleophobically coated glass were also investigated.

Effect of polymer substrates on nano scale hot embossing (나노 사이즈 hot embossing 공정시 폴리머의 영향)

  • Lee, Jin-Hyung;Kim, Yang-sun;Park, Jin-goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.71-71
    • /
    • 2003
  • Hot embossing has been widely accepted as an alternative to photolithography in generating patterns on polymeric substrates. The optimization of embossing process should be accomplished based on polymer substrate materials. In this paper, the effect of polymer substrates on nano scale hot embossing process was studied. Silicon molds with nano size patterns were fabricated by e-beam direct writing. Molds were coated with self-assembled monolayer (SAM) of (1, 1, 2.2H -perfluorooctyl)-trichlorosilane to reduce the stiction between mold and substrates. For an embossing, pressure of 55, 75 bur, embossing time of 5 min and temperature of above transition temperature were peformed. Polymethylmethacrylates (PMMA) with different molecular weights of 450,000 and 950,000, MR-I 8010 polymer (Micro Resist Technology) and polyaliphatic imide copolymer were applied for hot embossing process development in nano size. These polymers were spun coated on the Si wafer with the thickness between 150 and 200 nm. The nano size patterns obtained after hot embossing were observed and compared based on the polymer properties by scanning electron microscopy (SEM). The imprinting uniformity dependent on the Pattern density and size was investigated. Four polymers have been evaluated for the nanoimprint By optimizing the process parameters, the four polymers lead to uniform imprint and good pattern profiles. A reduction in the friction for smooth surfaces during demoulding is possible by polymer selection.

  • PDF

Synthesis of Tris(silyl)methanes by Modified Direct Process

  • Lee, Chang Yeop;Han, Jun Su;Yu, Bok Ryeol;Jeong, Il Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.959-968
    • /
    • 2000
  • Direct reaction of elemental silicon with a mixture of (dichloromethyl)silanes 1 $[Cl_3-nMenSiCHCl_2:$ n = 0 (a), n = 1(b), n = 2(c), n = 3(d)] and hydrogen chloride has been studied in the presence of copper catalyst using a stirred bed reactor equ ipped with a spiral band agitator at various temperatures from $240^{\circ}C$ to $340^{\circ}C.$ Tris(si-lyl) methanes with Si-H bonds, 3a-d $[Cl_3-nMenSiCH(SiHCl_2)_2]$, and 4a-d $[Cl_3-nMenSiCH(SiHCl_2)(SiCl_3)]$, were obtained as the major products and tris(silyl)methanes having no Si-H bond, 5a-d $[Cl_3-nMenSiCH(SiCl_3)_2]$, as the minor product along with byproducts of bis(chlorosilyl)methanes, derived from the reaction of silicon with chloromethylsilane formed by the decomposition of 1. In addition to those products, trichlorosilane and tetra-chlorosilane were produced by the reaction of elemental silicon with hydrogen chloride. The decomposition of 1 was suppressed and the production of polymeric carbosilanes reduced by adding hydrogen chloride to 1. Cad-mium was a good promoter for and the optimum temperature for this direct synthesis was $280^{\circ}C$.

Fabrication of Flexible Surface-enhanced Raman-Active Nanostructured Substrates Using Soft-Lithography

  • Park, Ji-Yun;Jang, Seok-Jin;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.411-411
    • /
    • 2012
  • Over the recent years, surface enhanced Raman spectroscopy (SERS) has dramatically grown as a label-free detecting technique with the high level of selectivity and sensitivity. Conventional SERS-active nanostructured layers have been deposited or patterned on rigid substrates such as silicon wafers and glass slides. Such devices fabricated on a flexible platform may offer additional functionalities and potential applications. For example, flexible SERS-active substrates can be integrated into microfluidic diagnostic devices with round-shaped micro-channel, which has large surface area compared to the area of flat SERS-active substrates so that we may anticipate high sensitivity in a conformable device form. We demonstrate fabrication of flexible SERS-active nanostructured substrates based on soft-lithography for simple, low-cost processing. The SERS-active nanostructured substrates are fabricated using conventional Si fabrication process and inkjet printing methods. A Si mold is patterned by photolithography with an average height of 700 nm and an average pitch of 200 nm. Polydimethylsiloxane (PDMS), a mixture of Sylgard 184 elastomer and curing agnet (wt/wt = 10:1), is poured onto the mold that is coated with trichlorosilane for separating the PDMS easily from the mold. Then, the nano-pattern is transferred to the thin PDMS substrates. The soft lithographic methods enable the SERS-active nanostructured substrates to be repeatedly replicated. Silver layer is physically deposited on the PDMS. Then, gold nanoparticle (AuNP) inks are applied on the nanostructured PDMS using inkjet printer (Dimatix DMP 2831) to deposit AuNPs on the substrates. The characteristics of SERS-active substrates are measured; topology is provided by atomic force microscope (AFM, Park Systems XE-100) and Raman spectra are collected by Raman spectroscopy (Horiba LabRAM ARAMIS Spectrometer). We anticipate that the results may open up various possibilities of applying flexible platform to highly sensitive Raman detection.

  • PDF