• Title/Summary/Keyword: Tribology parameter

Search Result 119, Processing Time 0.02 seconds

A Study on the Stability Improvement of Rotor System Supported by Hydrodynamic Bearing (동수압 저어널 베어링으로 지지된 회전축계의 안정성 향상에 관한 연구)

  • 정성천;장인배;한동철
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.56-62
    • /
    • 1995
  • The anisotropic pressure distribution of the hydrodynamic bearing may generate the unstable vibration phenomenon over a certain speed. These vibrations, known as whirl, whip or rotor instability, cannot be sustained over a wide range of rotational spees. Besides these vibrations not only perturb the normal operation of a rotating machine, but may also cause serious damage to the machinery system. And, it is really impossible to change one parameter without changing others, or difficult to fabricate the modified non-circular type bearing, with all the other cures used just now, In this study, hybrid bearing with magnetic exciter is designed for stability improvement of hydrodynamic bearing rotor system without changing mechanical parameters. For stability study, eigenvalue study of the bearing-rotor system is executed by finite element method and results of analyses and experiments show the possibilities of the stability improvement of the hydrodynamic bearing system by using the electricmagnetic force.

Effect of Composition and Microstructure of Si$_3$N$_4$ Ball OH Rolling fatigue Life under Boundary Lubrication (경제윤활하에서 질화규소몰의 미세구조 및 조성이 구름피로수명에 미치는 영향)

  • 최인혁;송복한;신동우
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.477-483
    • /
    • 2000
  • Rolling contact fatigue (RCF) tests were performed for two kinds of commercial silicon nitride balls using 4-Ball rolling contact fatigue life tester under EHL condition (Λ=8.9) and boundary lubrication condition (Λ=0.2). All the test balls were finished up to the dimensional accuracy of Grade 5 defined in KS B 2001 (Steel Balls for Ball Bearings) with a size of 8.731 mm. RCF tests were then conducted under the initial theoretical maximum contact stress 6.63 GPa and the spindle speed 10,000 rpm. All the test balls were not failed until 3.75 $\times$ 107 contact cycles and wear tracks of test balls were not conspicuous under EHL condition (Λ= 8.9). In the operations of low lambda regime (Λ= 0.2), all the test balls were surface damaged and high rolling wear resistance was achievable in fully densified using MgO 1 wt% and HIPed balls. Rolling wear of silicon nitride balls under boundary lubrication condition depend mainly on grain size and intergranular phase content of silicon nitride balls.

Fundamental study on the effect of friction reduction based micro-scale surface texturing (Micro-scale surface texturing을 기반으로 한 저마찰효과에 대한 기초연구)

  • Chae Younghun;Kim SeockSam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.17-24
    • /
    • 2004
  • Surrface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern using photolithography on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

  • PDF

The Effect of Engine Oil Degradation and Piston Top Ring Groove Temperature on Carbon Deposit Formation Part II - The Deposit Formation Characteristics of Diesel Engine (엔진 오일 열화와 피스톤 톱링 그루브 온도가 카본 디포짓 형성에 미치는 영향 Part II-디젤 엔진의 디포짓 형성 특성)

  • 김중수;민병순;오대윤;최재권
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.108-113
    • /
    • 1998
  • In order to investigate the characteristics of top ring groove deposit formation in diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, soot content in engine oil was selected as a main parameter for evaluating oil degradation. Deposit formation is highly related to soot content in lubricating oils. And high soot content oil accelerates deposit formation even in low temperature region below 26$0^{\circ}C$. In low temperature region below 26$0^{\circ}C$, deposit formation rate is mainly affected by top ring groove temperature. However, in high temperature region above 26$0^{\circ}C$, deposit formation rate is affected by soot content as well as top ring groove temperature. Therefore, soot content as well as top ring groove temperature should be kept a certain level in order to prevent troubles due to carbon deposit formation.

An Analytical Study on the Lubrication Characteristics between the Piston Ring and Grooved Cylinder Liner (그루브가 있는 실린더 라이너와 피스톤 링 사이의 윤활 특성에 대한 해석적 연구)

  • 조명래;한동철
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.114-120
    • /
    • 2000
  • This paper reports on the theoretical analysis on the lubrication characteristics between the piston ring and the grooved cylinder liner. The circular shape piston ring and two types grooves are consider, and the minimum oil film thickness during the full engine cycle are obtained by using iterative technique. The comparative results of minimum oil film thickness and viscous friction force between the smooth and grooved liner are presented. And various design parameter of piston ring and liner groove are tested. The groove in the liner generally reduces the minimum value of minimum oil film thickness, but the maximum viscous friction force is increased at the minimum film position.

A Study of Thermal Behaviors on the Effect of Aspect Ratio of Ventilation Hole in Disk Brake (디스크 브레이크의 방열구 형상비에 따른 열적 거동에 관한 연구)

  • 김진택
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.384-388
    • /
    • 2002
  • The adequate design of a passenger car braking system, which is directly related to the safety of a car, is very important since the safety is an essential design parameter of a car to keep men and car from the damage. The thermal behaviors of the ventilated disk has been investigated based on the air cooling effects during repeat braking operations. In this study, the thermal behavior of ventilated disk brake system was investigated by numerical method. The 3-Dimensional unsteady model was simulated by using a general purpose software package “FLUENT” to obtain the temperature distributions of disk and pad. The model includes the more realistic braking method, which repeats braking and release. The effects of aspect ratio of ventilated hole on the heat dissipation was investigated.

Morphological Analysis of Wear Particles in the Lubricating Oil with Additives (유성제 및 극압 첨가제에 따른 마멸입자 형상해석)

  • 이충엽;조연상;서영백;박흥식;전태옥
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.79-87
    • /
    • 1998
  • Morphological analysis of wear particles in the lubricating oil is a very effective and versatile means of lubricant analysis for machine condition monitoring and fault diagnosis. The prospects for determining quantitative information about wear particle morphology have been considerably enhanced by recent developments reported in the application of image processing and analysis techniques. This study was undertaken to investigate the influence of oiliness agent and extreme pressure agent on the shape of wear particles. The wear test was performed under different experimental conditions with stearic acid, dibenzyl disulfide(DBDS) and tricresol phosphate(TCP) in paraffinic base oil. Wear particles characteristics were described using four shape parameters, namely 50% volumetric diameter, aspect, roundness and reflectivity. The results showed that the four shape parameters of wear particles depend on a kind of the additives. This analysis of wear debris with computer image processing techniques is sufficient to distinguish some types of wear debris. The wear volume of three kinds of the specimens are affected by the additives with boundary films.

EHL Analysis of the Ball Joint Contact in a Reciprocating Compressor (왕복동형 압축기 볼 조인트 접촉의 탄성유체윤활 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.85-93
    • /
    • 2003
  • In this study, a multigrid multi-integration method has been used to solve the steady-state, elastohydrodynamic lubrication (EHL) point contact problem of a ball joint mechanism used in small reciprocating compressors. Pressure and film thickness profiles have been calculated at minimum and maximum Moes M parameter conditions during one revolution of crankshaft. The effects of various lubricant viscosities, loads, ball velocities, elastic modulli, and radii of curvature on the calculated pressure distribution and film thicknesses have been investigated. The results indicate that the viscosity of lubricant, the sliding velocity of ball, and the reduced radius of curvature have considerable effects on the minimum and central film thicknesses. Solutions obtained with the multigrid analysis are compared with results calculated according to the Hamrock & Dowson relations for the minimum and central film thicknesses.

Numerical Analysis on the Thermal Characteristics of a Ventilated Disc Brake (벤틸레이티드 디스크 브레이크의 열적특성에 관한 수치해석)

  • 김청균;성부용
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 1998
  • The adequate design of a passenger car's braking system, which is directly related to the safety of a car, is very important since the safety is an essential design parameter of a car to keep men and car from the damage. The general method to verify the performance and safety of a braking system is still based on the trial-error experiments. However, the design based on experiments costs high and is time-consuming method. So it is desirable to use the numerical analysis method for the reduction of cost and time in the design of a braking system. In this paper, the thermal characteristic of a ventilated disc brake has been analyzed as a function of the car speed and a deceleration during quick braking.

An Experimental Analysis on the Maximum Allowable PV Value of Oilless Composite Bearing Materials (오일레스 복합계 베어링재의 최대허용 PV값 측정에 관한 실험적 고찰)

  • 공호성;윤의성;전기수;송광호
    • Tribology and Lubricants
    • /
    • v.11 no.1
    • /
    • pp.27-36
    • /
    • 1995
  • Maximum allowable PV values of oilless composite bearing materials (70% epoxy-resin/30% Graphite) were measured and compared at various types of test rigs that have different contact geometry and the operating conditions. Test results showed that material failure was mainly characterized by the sharp increase in both coefficient of friction and surface temperature, and different PV values were measured under different Contact geometry. The discrepancy in measurement of PV values was analyzed in the light of theoretical frictional heating analysis. Results show that surface temperature rise depends on its contact geometry, and PV values could be overestimated in the testing conditions of high sliding velocity. Test data of different contact geometry were normalized by using a normalized contact pressure and sliding velocity; it showed a good correlation. This work suggests that normalized PV values could be more effective in evaluating bearing materials than conventional PV values for a design parameter of journal bearings.