• Title/Summary/Keyword: Tribology, Interface

Search Result 115, Processing Time 0.023 seconds

A Study on Head-Disk Interactions at Ultra-low Flying Height in Contact Start-Stop (Contact Start-Stop 방식에서의 극저부상 높이에서 Head-Disk Interface Interactions 연구)

  • 조언정
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • The height of laser bumps has been considered as the limit of the minimum flying height in the contact start-stop (CSS) of hard disk drives. In this paper, tribological interactions at flying height under laser bumps are investigated in a spin stand for development of ultra-low flying head-disk interface. With the reduction of the spinning speed in a spin stand, the flying height is decreased under the height of laser bumps and, then, head-disk interactions are investigated using AE and stiction/friction signals. During seek tests and 20000 cycle-sweep tests, AE and stiction/friction signals are not significantly changed and there are no catastrophic failures of head-disk interface. Bearing analysis and AFM analysis show that there are signs of wear and plastic deformation on the disks. It is suggested that flying height could be as low as and, sometimes, lower than laser bump height.

Experimental Study on the Interface Bonding Characteristics of a Pin-bushing Bearing (핀부시 베어링 소재의 계면접합특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.315-319
    • /
    • 2008
  • This paper presents the interface bonding characteristics between a phosphor bronze and a steel plate for pin-bush bearings. The pin-bush bearing is an important component in which is used to reduce a friction loss and a wear against the piston pin. The pin-bush bearing is manufactured by hot-pressing a phosphor bronze and a back metal of a steel plate. This paper investigated the bonding interface characteristics in which is manufactured by melting a copper based bronze and a steel plate. The hardness from the inner surface of a bronze to the outer one of steel has been measured using a Vickers hardness tester. The experimental results show that the hardness of a bronze is superior to that of the conventional bronze and the transient hardness of pin-bush bearings is gradually increasing to the hardness of the steel back metal. This means that the bonding interface zone of pin-bush bearings may be fabricated by defusing a bronze to the steel plate due to a density difference between two materials.

The Analysis of the Contact Stresses at the Cam and Follower Interface in the Direct Acting Type Valve Train System (직접 구동형 밸브트레인 시스템의 캠-팔로워 접촉면의 접촉 응력 해석)

  • 조명래;신흥주;한동철
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.289-294
    • /
    • 2000
  • This paper present the contact stresses, which considers the shear stress at the cam and follower interface in the direct acting type valve train system of a high speed engine. To determine the contact condition, the normal contact forces are calculated by using the lumped mass dynamic modeling. The line contact is considered between the cam and follower interface. The variations of dynamic stresses are presented as a function of camshaft rotational angle. Also the effects of various design parameters are investigated.

Stiction and AE Characteristics of Hard Disk Drive under Various Environmental Conditions (환경 조건에 따른 하드디스크의 Stiction 및 AE 특성)

  • 박용식;성인하;김대은
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • Hard disk drives operate in various environmental conditions. Thus, it is necessary to assess the reliability of the head/disk interface under these conditions. In this work, stiction and acoustic emission signals were investigated under different temperature, humidity, and ambient pressure conditions. Also, track average amplitude was observed for disk failure in N$_2$environment. It is shown that failure of the head/disk interface occurs more readily at high temperature and low ambient pressure conditions.

Relationship between Take-off Behavior of Hard-disk Slider and AE Signal (하드디스크 슬라이더의 부상 특성과 AE신호의 관계)

  • 이상민;문재택;김대은
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.40-55
    • /
    • 2001
  • Acoustic emission(AE) signal has been widely utilized to monitor the interaction at the head/disk interface. In this work the relationship between the AE signal and the state of contact between the slider and the disk is presented. Results of the FFT(Fast Fourier Transform) analyses of the AE signal could be used to better understand the interfacial interaction. Also, it was found that wear particles affect the AE signal. Therefore, the signal can be used to monitor the wear particle presence at the interface.

Synthesis of Antioxidant and Evaluation of Its Oxidation Stability for Biodiesel

  • Park, Soo-Youl;Shin, Seung-Rim;Shin, Joung-II;An, Kyoung-Lyong;Jun, Kun
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.392-396
    • /
    • 2013
  • Biodiesel fuels contain unsaturated fatty acid ester, which can easily oxidize, especially when exposed to ultraviolet light. The products formed by this oxidation give rise to sediment or gum formation. As a result, the fuel can contribute to the corrosion and plugging of the filter pump. Antioxidants have been used in an effort to stabilize biodiesels, but there is still a need for a biodiesel composition with improved oxidation stability. In general, good fuel compositions should provide synergistic combinations of a biodiesel and antioxidants. Our work involved the synthesis of antioxidants to improve the oxidative stability of biodiesel fuel.

Effect of Particulate Contamination on the Friction and Wear of Pico/Nano-Slider (오염입자가 pico/nano-slider의 마찰 마모에 미치는 영향)

  • ;Bharat Bhushan
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.469-476
    • /
    • 2000
  • The effect of particulate contamination on the friction and wear between a negative-pressure picoslider/tri-pad nanoslider and laser-textured disk was studied. Particles of different concentration were injected at the head-disk interface consisting of disks with various textures and slider types at different speed. Durability increased and coefficient of friction decreased as the disk speed increased in a contaminated environment. Frictional characteristics and durability in the data Bone were better than those in the laser-textured zone. It was also found that durability of head-disk interface (HDI) decreased as the particle concentration increased. The interface durability with a picoslider was better than that with a nanoslider at any condition in a contaminated environment. Based on the test results, mechanisms were proposed to explain the reasons why durability with a picoslider was superior to that with a nanoslider.

Effect of Particulate Contamination on the Friction and Wear of Head-Disk Interface with Picoslider (오염입자가 Picoslider의 헤드-디스크 인테페이스 마찰 마모에 미치는 영향)

  • ;Bharat Bhushan
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.395-402
    • /
    • 2000
  • The effect of particulate contamination on friction and wear between a negative-pressure picoslider and a laser-textured disk was studied. Particles of different concentrations, materials and sizes were injected to the head-disk interface (HDI), consisting of disks with various textures, at the same speed. In a contaminated environment, durability of head-disk interface gradually decreased as the particle concentration increased. Large particles caused HDI failure early and resulted in an extensive damage to the slider and disk surfaces. Hard particles also caused HDI failure earlier and damages more extensive than soft ones. Based on the test results, mechanisms of HDI failure with picoslider were presented.

알루미나 세라믹스의 분위기 변화에 따른 Tribology 특성

  • 진동규;박흥식;전태옥;이광영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.33-40
    • /
    • 1997
  • This study was undertaken to investigate tribology characteristics of the alumina ceramics($Al_2O_3$) for the vauiation of ambient condition such as air and distilled water. The results obtained were as follows. As the sliding speed increases, the friction coefficient in the air decreased due to the reduction of sheafing stress caused by the heat accumulation of contact interface. And the friction coefficient in the distilled water decreased due to an activation of the tribochemical reaction. As the contact load increases, the friction coefficient is small in the air due to temperature rise of the contact interface. However, at the low speed side in the distilled water, the friction coefficient holds a large value due to decrease of the tribochemical reaction. The friction surface of ceramics can be protected in the air by the influence of the oxides tansfered from STB2 and also in the distilled water by the influence of the corrosive productive hydroxides.

  • PDF