• 제목/요약/키워드: Tribo-coating

검색결과 23건 처리시간 0.025초

Lubrication of Space Systems by Tribo-coating

  • Kato, Koji
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.7-8
    • /
    • 2002
  • It is a time to introduce a concept of lubrication to space systems. Minimum amount of lubricant should be supplied to a contact interface instead of preparing too much lubricant on surfaces of the earth. In situ controllable lubrication method is wanted to overcome unexpected tribo-troubles in space. Tribo-coating, which forms a thin solid film in nm-scale by vacuum deposition during friction, is a promising lubrication method for space.

  • PDF

초고진공중에 있어서 Tribo-Coating 윤활기구의 기초연구

  • 김형자;가등강가;전태옥;박홍식
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1992년도 제16회 학술강연회초록집
    • /
    • pp.38-43
    • /
    • 1992
  • 우주공간의 기계, 기구에 있어서는 무게에 기인하는 운동의 저항이 없기 때문에 마찰저항의 제어가 결정적으로 중요하게 된다. 이과제에 대하여 저자들은 여태까지의 고체윤활법와는 다른 새로운 Tribo-Coating 법을 개발하여 그 유효성을 나타내어 왔다. 본 연구에서는 피막재로서 전회의 보고에서 이미 유효성이 나타난 바 있는 In을 사용하여 마찰반복수에 다른 마찰계수변화에 미치는 Pin, disc의 표면거칠기의 변화의 영햐응 명확하게 밝히고, 초고진공중에 있어서 Tribo-Coating법에 의한 In 막의 윤활기구를 검토하고저 한다.

  • PDF

A Study on Friction and Wear Properties of Tetrahedral Amorphous Carbon Coatings on Various Counterpart Materials

  • Lim, Min Szan;Jang, Young-Jun;Kim, Jong-Kuk;Kim, Jong-Hyoung;Kim, Seock-Sam
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.241-246
    • /
    • 2018
  • This research addresses the improvement of tribo-systems, specifically regarding the reduction of friction and wear through tribo-coupling between tetrahedral amorphous carbon (ta-C) with different types of counterpart materials, namely bearing steel (SUJ2), tungsten carbide (WC), stainless steel (SUS304), and alumina ($Al_2O_3$). A second variable in this project is the utilization of different values of duct bias voltage in the deposition of the ta-C coating - 0, 5, 10, 15, and 20 V. The results of this research are expected to determine the optimum duct bias and best counter materials associated with ta-C to produce the lowest friction and wear. Results obtained reveal that the tribo-couple between the ta-C coating and SUJ2 balls produces the lowest friction coefficient and wear rate. In terms of duct bias changes, deposition using 5 V produces the most optimum tribological behavior with lowest friction and wear on the tribo-system. In contrast, the tribo-couple between ta-C with a WC ball causes penetration through the coating surface layer and hence high surface delamination. This study demonstrates that the most effective ta-C coating duct bias is 5 V associated with SUJ2 counter material to produce the lowest friction and wear.

초고진공중에 있어서 Tribo-Coating 막의 윤활특성

  • 김형자;가등강가;전태옥;박홍식
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1992년도 제15회 학술강연회초록집
    • /
    • pp.71-76
    • /
    • 1992
  • 초고진공중에 있어서의 기계, 기기의 설계에 있어서 마찰의 제어는 가장 중요한 과제의 하나이다. 지금까지 그 마찰면의 윤활을 위해서는 고체 윤활제로서 Au, Ag 등 $MoS_2$ 피막이 많이 쓰여져 왔다. 또한 그것들의 피막 형성법으로서 Plasma Coating, Sputtering 및 Ion-Plating 등의 여러가지 피막형성법이 개발되어 왔다. 그러나 어느 경우도 형성된 $수\mum$의 피막의 마모에 의한 유한의 수명이 존재하고, 마찰게수의 면에서도 아직 충분하다고 말 할수 없는 것이 현상이다. 이것에 대하여 필자들은 우주에 있어서 사용을 목적으로 새로운 피막 형성법으로서 Tribo-Coating법을 개발하여 그 유효성을 나타내어 왔다. 본 연구에서는 초고진공중에 있어서 Tribo-Coating법에 의한 In막의 윤활 특성에 영향을 미치는 지배적 제인자의 역활을 밝히고져한다.

  • PDF

초고진공중의 Tribo-Coating막의 윤활특성 (2)

  • 김형자;전태옥
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.617-621
    • /
    • 1993
  • 우주는 무중력, 또한 초고진공의 세계이다. 우주에서 기계가 작동할 때, 운동 저항은 마찰력과 관성력만이 작용한다. 여기서 관성력은 가속, 감속 일 때만 작용하며 그 힘은 정확하게 계산하여 얻을 수 있다. 이것에 대하여 마찰력은 접촉면에 항상 존재하며, 또한 비정상이다. 본 연구에서는 피막재로서 앞서의 보고에서 이미 유효성이 나타난 바 있는 In을 사용하여 마찰 반복수에 따른 마찰관계변화에 미치는 Pin, disc의 표면 거칠기의 변화의 영향을 명확하게 밝히고, 초고진공중에 있어서 Tribo-Coating법에 의한 In막은 윤활기구를 검토하고자 한다.

  • PDF

Preparation and Tactile Performance of Soluble Eggshell Membrane (S-ESM) Embedded Waterborne Polyurethane (WPU) Composite

  • Soohyun Joo;Tridib Kumar Sinha;Junho Moon;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • 제58권3호
    • /
    • pp.112-120
    • /
    • 2023
  • Herein, we propose a facile water-processible method to develop an eggshell membrane (ESM)-embedded waterborne polyurethane (WPU)-based bio-degradable and bio-compatible coating material that exhibits attractive tactile properties. Virgin ESM is not dispersible in water. Hence, to develop the ESM-based WPU composite, soluble ESM (S-ESM) was first extracted by de-crosslinking the ESM. The extracted S-ESM at different concentrations (0, 0.5, 1.0, 1.5 wt %) was mixed with WPU. Compared to virgin WPU, the viscosity of S-ESM/WPU dispersion and the in-plane coefficient of friction (COF) of the composite film surfaces decreased with an increase in the S-ESM content. In addition, an increase in the S-ESM content improved the tribo-positive characteristics of the film. Different good touch-feeling biomaterials, such as fur, feather, and human skin exhibit tribo-positivity. Thus, the enhanced tribo-positive characteristics of the S-ESM/WPU and the decrease in their COF owing to an increase in the S-ESM content imply the enhancement of its touch-feeling performance. The S-ESM embedded WPU composites have potential applications as coating materials in various fields, including automobile interiors and artificial leather.

SEM 내부에 설치된 트라이보 시험기를 통한 금속 코팅의 실시간 마찰/마모 특성 분석 (Real Time Analysis of Friction/Wear Characteristics of Metal Coatings with a Tribo-tester Installed in an SEM)

  • 김해진;김대은;김창래
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.318-324
    • /
    • 2018
  • This study aims to visualize the friction and wear behaviors of metal coatings in real time. The main mechanism of wear is identified by observing all the processes in which wear occurs. The friction coefficients of the moments are monitored to confirm the relationship between the friction and wear characteristics of the coating. Thin Ag coatings, which are several hundred nanometers in thickness, are prepared by depositing Ag atoms on silicon substrates through a sputtering method. A pin-on-disk-type tribo-tester is installed inside a scanning electron microscope (SEM) to evaluate the friction and wear characteristics of the Ag coating. A fine diamond pin is brought into contact with the Ag coating surface, and a load of 20 mN is applied. The contact pressure is calculated to be approximately 15 GPa. The moments of wear caused by the sliding motion are visualized, and the changes in the friction characteristics according to each step of wear generation are monitored. The Ag coating can be confirmed to exhibit a wear phenomenon by gradually peeling off the surface of the coating on observing the friction and wear characteristics of the coating in real time inside the SEM. This can be explained by a typical plowing-type wear mechanism.

초고진공중의 Tribo-Coating 막의 윤활특성(II) (Lubricating Properties of Tribo-Coating Film in Ultra High Vacuum)

  • 김형자;전태옥
    • Tribology and Lubricants
    • /
    • 제10권4호
    • /
    • pp.69-74
    • /
    • 1994
  • The space world under zero gravity and super vacuum where the space machine works has only friction and inertia. Inertia of acceleration and diceleration is accurately obtained by computing while friction is always in contact surface and unsteady. The sur soundings under super vacuum make surface friction more complicate. [1,2]. Therefore, method to lubricate stably the contact surface for long term in space machine is very important and friction for space machine proves to be true by several accident of space projects. In spite of that accident, method of lubrication and lubricants to keep stablity for long term in space machine have not been established so far. Lubrication for space machine is very important and under developings over the world. In this study we suggest a new lubricating technology, which improves powerful for space machine.

지르코니아 수복물의 접착을 위한 임상 가이드 (Clinical Guide for Adhesion of Zirconia Restoration)

  • 황성욱
    • 대한심미치과학회지
    • /
    • 제23권2호
    • /
    • pp.58-69
    • /
    • 2014
  • In case of esthetic restorative procedure with zirconia restoration, we have to use resin cement because of not only just for retention but also esthetic reason. In such a clinical situation, we have to consider two bonding interfaces, one is tooth surface to resin cement and the other is zirconia surface to resin cement. There is well established bonding protocol between tooth surface to resin cement, but bonding protocol of zirconia surface to resin cement is still controversial. In scientific point of view, there are two mechanism for bonding of zirconia restoration.. One is mechanical retention and the other is chemical adhesion. However, we have three different options for bonding of zirconia restoration in clinical situation; 1) Tribo-chemical coating with silica and silane coupling agent 2) Zirconia primer with phosphate chemistry 3) Self-adhesive resin cement with phosphate chemistry.

질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구 (Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings)

  • 강용진;장영준;김종국
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF