• Title/Summary/Keyword: Triaxial compression tests

Search Result 261, Processing Time 0.03 seconds

Effects of silt contents on the static and dynamic properties of sand-silt mixtures

  • Hsiao, Darn H.;Phan, Vu T.A.
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.297-316
    • /
    • 2014
  • This paper presents a detailed study focused on investigating the effects of silt content on the static and dynamic properties of sand-silt mixtures. Specimens with a low-plastic silt content of 0, 15, 30 and 50% by weight were tested in static triaxial, cyclic triaxial, and resonant columns in addition to consolidation tests to determine such parameters as compression index, internal friction angle, cohesion, cyclic stress ratio, maximum shear modulus, normalized shear modulus and damping ratio. The test procedures were performed on specimens of three cases: constant void ratio index, e = 0.582; same peak deviator stress of 290 kPa; and constant relative density, $D_r$ = 30%. The test results obtained for both the constant-void-ratio-index and constant-relative-density specimens showed that as silt content increased, the internal friction angle, cyclic stress ratio and maximum shear modulus decreased, but cohesion increased. In testing of the same deviator stress specimens, both cohesion and internal friction angle were insignificantly altered with the increase in silt content. In addition, as silt content increased, the maximum shear modulus increased. The cyclic stress ratio first decreased as silt content increased to reach the threshold silt content and increased thereafter with further increases in silt content. Furthermore, the damping ratio was investigated based on different silt contents in three types of specimens.

Estimation of Soft Ground Characteristics using the Piezo-Cone Penetration Tests(CPTu) on Honam High-Speed Railway Planning Line (호남고속철도 계획노선에서의 피에조콘 관입시험(CPTu)에 의한 연약지반 특성 평가)

  • Lee, Il-Wha;Kwon, Oh-Jung;Kwen, Jin-Su;Min, Kyoung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1796-1801
    • /
    • 2007
  • Piezocone penetration testing(CPTu) results such as cone resistance$(q_c)$, sleeve friction$(f_s)$, and pore pressure(u), have been carried out at 5 sites in Honam high-speed railway areas of Korea, in order to continuously estimate the characteristics of soil layers and the undrained shear strength$(S_u)$ in a soft ground. For the applications of the conventional CPTu results to undrained shear strength, the cone factors$(N_{kt})$ were deduced based on Field vane tests, and Monte-Carlo Simulation(MCS). Moreover the correlations of the undrained shear strength of CPTu by soil depths were compared and revised with the results of triaxial compression(UU test), field vane and Dilatometer tests(DMT). The depths of soft foundation at 5 sites in Honam high-speed railway areas were calculated based on the results of the various field tests in addition CPTu. The applicability of CPTu for a soft foundation criterion referred to the criteria of high-speed railway and related agencies in Korea was evaluated.

  • PDF

Settlement Reduction Effect of the Geogrid Reinforced Stone Column System (고강도 지오그리드로 보강된 Stone Column 공법의 침하감소효과)

  • Park, Sis-Am;Cho, Sung-Han;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Sand Compaction Pile and Stone Column method have been used in widely during several decades as a technique to reinforce soft soils and increasing ultimate bearing capacity, accelerate consolidation settlement of the foundation ground. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, development the geogrid reinforced stone column system for settlement reduction and wide range of application of stone columns. To develop this system, triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate and confine pressure. Then, 3-dimensional numerical analysis were evaluated for application of the GRSC (geogrid reinforced stone column) system as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on types and reinforcing depth change of geogrid.

  • PDF

A Study on Shear Characteristics of a Rock Discontinuity under Various Thermal, Hydraulic and Mechanical Conditions (다양한 열-수리-역학적 조건 하에서 불연속면 전단 거동 특성에 관한 실험적 연구)

  • Kim, Taehyun;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.68-86
    • /
    • 2016
  • Understanding the frictional properties of rock discontinuities is crucial to ensure the stability of underground structures. In particular, the frictional behavior at depth depends on the complex interaction among mechanical, hydraulic, thermal and chemical characteristics and their coupled effects. In this study, a series of shear tests were carried out in a triaxial compression chamber to investigate the shearing behavior of saw-cut granite surface and rough shear surface of synthetic rocks. The test results were analyzed using Coulomb's shear strength criterion. The frictional behavior of saw-cut granite surface showed little variation at different confining, water pressures and temperature conditions, however in case of synthetic rocks, the frictional behavior showed different trend depending on normal stress level. In addition, the variation of stiffness and dilation at different testing conditions were analyzed, and the stiffness and dilation showed little variation at different water pressures and temperature conditions.

Analysis of Soil Samples Obtained from Piston Sampler and Large Diameter Sampler (피스톤 샘플러와 대구경 샘플러를 이용한 시료 샘플의 공학적 분석)

  • Kim, Young Chin;Kang, Jae Mo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.29-34
    • /
    • 2008
  • A large diameter sampler was developed to take undisturbed samples from not only soft ground but also sandy and weathered ground. The large diameter sampler which was developed in Korea Institute of Construction Technology(KICT-type large diameter sampler) was manufactured based on the principle of triple core barrel sampling. A specially designed cutting device was used to cut and contain various kinds of samples in the sampler during a sampling and retrieval procedure. By adjusting the stiffness of the spring located at the top of the sampler, the distance between the cutting shoe and auger can be controlled in accordance with the ground condition. In order to investigate the applicability of the developed sampler and compare the quality of the samples taken by the sampler with that by the traditional thin-walled tube sampler, samples were taken at various sites according to the ground condition. And a series of laboratory tests such as the unconfined compress ion test, triaxial compression test, oedometer test, large diameter Rowe cell consolidation test (D: 150 mm) were performed. The test results showed that the samples by the KICT-type large diameter sampler show higher quality than the samples by the thin-walled tube sampler. And the validity and applicability of the developed KICT-type large diameter sampler was confirmed accordingly.

  • PDF

Experimental Evaluation of Shear Strength of Surface Soil Beneath Greenhouse Varying Compaction Rate (비닐하우스 기초 토양의 다짐률 변화에 따른 전단강도 특성)

  • Lim, Seongyoonc;Heo, Giseok;Kwak, Dongyoup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.17-26
    • /
    • 2021
  • Greenhouses have been damaged due to the uplift pressure from strong wind, for which rebar piles are often installed near the greenhouse to resist the pressure. For the effective design of rebar piles, it is necessary to access the shear strength of soil on which the greenhouse is constructed. This study experimentally evaluates the shear strength of the soil beneath the greenhouse. Four soil samples were collected from four agricultural sites, and prepared for testing with 75, 80, 85, and 90% compaction rates. One-dimensional unconfined compression test (UC), consolidated-undrained triaxial test (CU), and resonant column test (RC) were performed for the evaluation of shear strength and shear modulus. Generally, the higher shear strength and modulus were observed with the higher compaction rates. In particular, the UC shear strength increases with the increase of #200 sieve passing rate. Resulting from the CU test, the sample with the most of coarse soil had the highest friction angle, but the variation is small among samples. Resulting from the CU and RC tests, the ratio of maximum shear modulus with the major principle stress at failure was the higher at the finer soil. The ratio was two to three times greater than the ratio from the standard sand. This indicates that the shear strength is lower for the fine soil than the coarse soil at the same shear modulus. The results of this study will be a useful resource for the estimation of the pull-out strength of the rebar pile against the uplift pressure.

Study on the mechanical properties test and constitutive model of rock salt

  • Zhao, Baoyun;Huang, Tianzhu;Liu, Dongyan;Liu, Yang;Wang, Xiaoping;Liu, Shu;Yu, Guibao
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.291-298
    • /
    • 2019
  • In order to study the mechanical properties of rock salt, triaxial compression tests under different temperatures and confining pressure are carried out on rock salt specimens, the influence of temperature and confining pressure on the mechanical properties of rock salt was studied. The results show that the temperature has a deteriorative effect on the mechanical properties of rock salt. With the increase of temperature, the peak stress of rock salt decreases visibly; the plastic deformation characteristics become much obvious; the internal friction angle increases; while the cohesion strength decreases. With the increase of confining pressure, the peak stress and peak strain of rock salt will increase under the same temperature. Based on the test data, the Duncan-Chang constitutive model was modified, and the modified Duncan-Chang rock salt constitutive model considering the effect of temperature and confining pressure was established. The stress-strain curve calculated by the modified model was compared with the stress-strain curve obtained from the test. The close match between the test results and the model prediction suggests that the modified Duncan-Chang constitutive model is accurate in describing the behavior of rock slat under different confining pressure and temperature conditions.

Stress-strain Behavior of Remolded Clay Using Different Shear Rate and Plastic Indices (전단속도와 소성지수를 달리한 재생성 점성토의 응력-변형률 거동)

  • Lee, Yonghee;Kang, Kwon-Soo;Jung, Sang-Guk;Kang, Jintae;Kim, Daehyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • In general, the shear strength of a clay specimen under the direct shear test and the triaxial compression test increases with an increase in the shear rate. This study investigates the effects of shear rate and silt content on the stress-strain behavior of remolded Gwangyang clay, by changing the shear rate and the silt content. Based on the results of the triaxial compression tests, the equi-strain line of remolded Gwangyang clay shows initially positive slope and then becomes flat at certain strain level. As the strain level where the equistrain becomes flat is different depending on the soil with different silt contents, this can be considered as the inherent property of soil.

Study on a 3-Dimensional Rock Failure Criterion Approximating to Mohr-Coulomb Surface (Mohr-Coulomb 파괴곡면에 근사하는 암석의 3차원 파괴조건식 고찰)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.93-102
    • /
    • 2011
  • In spite of being unable to take into the effect of intermediate principal stress, Mohr-Coulomb and Hoek-Brown criteria are very popular as rock failure criteria. The recent researches reveal that the influence of intermediate principal stress on the failure strength of rock is substantial, so that 3-D failure criteria in which the intermediate principal stress could be considered is necessary for the safe design of the important rock structures. In this study, the likely application of the 3-D failure criterion proposed by Jiang & Pietruszczak (1988) to the prediction of the true triaxial strength of rock materials is discussed. The failure condition is linear in the meridian plane of principal stress space and it is represented by the smooth surface contacting the corners of the Mohr-Coulomb surface. The performance of the Jiang & Pietruszczak's criterion is demonstrated by simulating the actual true triaxial tests on the rock samples of three different rock types.

Shear Strength Characteristics of Short-fiber Reinforced Soil for the Application of Retaining Wall Backfill (옹벽 배면토체 적용을 위한 단섬유 보강토의 전단강도 특성)

  • Park, Young-Kon;Cha, Kyung-Seob;Chang, Pyoung-Wuck
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.73-78
    • /
    • 2003
  • As a fundamental study to develop the retaining wall of new type, short-fibers are mixed with soils and a series of compaction tests and triaxial compression tests for short-fiber reinforced soils are performed. From the results of compaction tests, optimum moisture content is increased and maximum dry unit weight is decreased with fiber mixing ratio. When 60mm fibrillated fiber of 0.2$\%$ mixing ratio is added to SM soil, strength increment of short-fiber reinforced soil is above 1.2 times compared to soil only. Strength increment shows maximum value for composite reinforced soil, namely, soil+short-fiber+planar reinforcement. But in case of mixing with ML soil and short-fiber, the strength of short-fiber reinforced soil is nearly the same as soil only. Internal angle of short-fiber reinforced soil is increased about $2\~3$ degrees and cohesion is also increased above 10kPa compared to soil only. Therefore, it is judged that short-fiber is a good material to strengthen the soil.

  • PDF