• Title/Summary/Keyword: Triassic

Search Result 134, Processing Time 0.024 seconds

Fossil Conchostraca from the Amisan Formation of the Nampo Group, Korea (남포층군의 아미산층에서 산출된 패갑류 화석)

  • Kim, Jong-Heon;Lee, Gui-Hyeong
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.181-189
    • /
    • 2015
  • A large number of fossil conchostraca used in this study were collected from the Amisan Formation distributed in the western part of Chungnam, Korea. These fossils were densely discovered in several horizons of the Amisan Formation, and might have flourished in the fresh water environment of subtropical climate. The fossil conchostraca from the Amisan Formation were classified into four species belonging to three genera as follows: Euestheria kawasakii, E. shimamurai, Sphaerestheria koreanica, and Cyclestherioides rampoensis. Out of four species, the last species was previously described from the Amisan Formation, and the other three species were newly found. Based on the fossil conchostraca, it is inferred that the geological age of the Amisan Formation falls under the Late Triassic Period.

포항분지에 대한 석유지질학적 연구

  • 김기현;김재호;김상석;박동배;이용일
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.48-55
    • /
    • 1998
  • The Pohang Basin is located in Pohang City and adjacent coastal areas in the southeastern Korea. It has a sequence of 900 meters of Neogene marine sediments (Yeonil Group) while offshore basins in the East Sea, e.g., the Ulleng basin, is over 10 Km in thickness. An understanding of the marine Yeonil Group in the Pohang Basin may provide insights into the hydrocarbon potential of the offshore East Sea regions. Heulandite, smectite, dolomite, kaolinite and opal-CT are commonly found as diagenetic minerals in the Yeonil Group. Among these minerals, heulandite occurs as a main cement only in sandstones consisting of volcanic matrix, Smectite composition and diagenetic mineral facies such as heulandite and opal-CT may reflect that the Yeonil Group has undergone shallow burial, temperatures below about 60 degrees. This suggest that sandstones have experiened weak diagenetic alteration. In order to reconstruct the thermal history of the basin, apatite fission-track analysis was carried out. Aapparent apatite fission-track ages (AFTAs) exhibit a broader range of ages from 238 Ma to 27 Ma with mean track lengths in the range of $15.24\pm8.0$ micrometers, indicating that these samples had undergone significant predepositional thermal alteration. The Triassic to Cretaceous AFTAs seem In represent the timing of cooling of their sedimentary sources. Late Cretaceous mean AFTA $(79.0\pm8.0 Ma)$ on the Neogene Yeonil Group indicates that the Yeonil Group had not been buried deeper than 2km since its deposition. The organic matters of. the Pohang Basin remain in the immature stage of thermal evolution because burial depth and temperature were not sufficient enough for maturation even in the deep section of the basin.

  • PDF

A Brief Review on Limestone Deposits in Korea, Vietnam and Applications of Limestone

  • Kwak, Yujung;Tuan, Lai Quang;Jung, Euntae;Jangb, Changsun;Oh, Chaewoon;Shin, Kyung Nam
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.42-49
    • /
    • 2020
  • Precipitated Calcium Carbonate (PCC) can be utilized in energy-effective paper production. Limestone is a raw material for synthesizing PCC. Since the PCC production yield depends on the physicochemical properties of the limestone, a basic investigation of the raw limestone is required. This study provides a brief review of the origin of limestone, limestone distribution characteristics, and limestone deposits in Korea and Vietnam. Most limestones in Korea were formed in the Paleozoic era. On the other hand, limestones in Vietnam have various ages from the Precambrian to the Triassic. Limestone is the most largely produced mineral in Korea, but Vietnam has 5 times more amount of limestone reserves than Korea.

The Study on Geochronology and Petrogenesis of Foliated Granites in the Honam Shear Zone, South Korea (호남 전단대내에 분포하는 엽리상화강암류의 지질시대와 생성과정에 관한 연구)

  • Kim, Yong-Jun;Park, Young-Seog;Kang, Sang-Won
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.247-261
    • /
    • 1994
  • Honam Shear Zone is a mylonite zone approximately parallel to the NE-SW trend located southern part of Korea peninsula. Geologic ages and petrogenesis of foliated granites in this zone are as follows: Igneous rocks of this zone are composed of granite gneiss, Paleozoic granites, Songrim granites, Jurassic granites and Cretaceous granites. Foliated granites show deformed phase of Paleozoic and Songrim granites during Daebo Orogeny. And isotopic ages obtained from foliated granites are early Permian to late Triassic period (276~200 Ma). Most of foliated granite masses are igneous complex consisting of a series of differential product of cogenetic magma. The individual rock mass of foliated granites plotted on Harker diagram shows mostly similar trend of calc-alkali series. REE diagram indicates that LREE amount of foliated granites are more enriched than HREE and negative Eu anomalies of them are weaker than those of the other granites. From these data, we suggest the rocks are generated from continental margin under syntectonic environment. Original magma type of foliated granites correspond to I-type, syn-collision type and Hercyano type. In compressive stress field between Ogcheon folded belt and Youngnam massif, foliated granites had formed due to mylonitic deformation. Those facts indicate that magma of foliated granites would had been generated by melting in lower crust or contamination in upper mantle.

  • PDF

K-Ar biotite ages of pelitic schists in the Jeungpyeong-Deokpyeong area, central Ogcheon metamorphic belt, Korea (증평-덕평 지역 중부 옥천변성대에 분포하는 이질 편암의 K-Ar 흑운모 연대)

  • 조문섭;김인준;김현철;민경원;안중호;장미경개
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.178-184
    • /
    • 1995
  • The K-Ar ages of biotites, obtained from thirteen pelitic schists in the Jeungpyeong-Deokpyeong area, central Ogcheon metamorphic belt, range from 89 Ma to 213 Ma except for one specimen. These K-Ar ages systematically decrease as the distance between the analyzed specimen and the Jurassic or Creataceous granite decreases. The K-Ar ages of b~otites adjacent to the Jurassic and Cretaceous granites are 166 Ma and 89 Ma, respectively. Thus, the biotite ages are interpreted to result from the partial or complete resetting by thermal activities in association with the intrusion of Mesozoic granites, following the regional-thermal metamorphism at Late Triassic to Early Jurassic times.

  • PDF

Sm-Nd Isotopic Study of the Ogcheon Amphibolite, Korea: Priliminary Report (옥천 각섬암의 Sm-Nd 동위원소연구 : 예비보고서)

  • Kwon, Sung-Tack;Lan, Ching-Ying
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.277-285
    • /
    • 1991
  • We applied Sm-Nd isotopic system to so-called amphibolites occurring within the Ogcheon group to provide constraints on the age of the metasedimentary rocks and to characterize tectonic environment of basaltic magmatism. An internal mineral isochron age of $677{\pm}91Ma({\sigma})$ was obtained from a coarse-grained, intrusive, amphibolite near Mungyeong. Considering previous studies on the age of the Ogcheon group, we interpret that the isochron represents either early metamorphic or emplacement age. The depositional age of the metasedimentary rocks intruded by the amphibolite would be prior to late Proterozoic. The present study and Cambro-Ordovician fossil evidences of previous workers suggest that both Precambrian and Phanerozoic rocks are present in the Ogcheon group. Positive ${\varepsilon}$ Nd values(+2.4 to +3.5) of four whole rocks indicate mantle origin for the amphibolite. These isotopic data, along with published immobile trace element data of Cluzel et al.(1989), strongly suggest that parental rocks of the amphibolite formed in an intraplate environment rather than in island arc or midocean ridge. The age and tectonic environment of amphibolites in the Ogcheon belt suggest that the basaltic magmatism may be related to the late Proterozoic break-up of a presumed supercontinent, but not to the Triassic(?) collision between North and South China continents.

  • PDF

The Relation between Sandy Shore Distribution and Basic Rock in the East Coast of the Korean Peninsula (한반도 동해안의 모래해안 발달과 암석 분포 사이의 상관성)

  • Kim, Young-Rae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.4
    • /
    • pp.21-35
    • /
    • 2018
  • The distribution and size of sandy beaches along eastern Korea has a close relationship with the presence of granite rocks. In general, elongated and wide beaches with abundant sands are likely to develop along the coasts where granitic basic rocks comprise the dominant geology or where a large amount of sands are supplied by streams from inland granitic rocks. Small sandy beaches, in contrast, appear in non-granitic rocks (i.e., under sedimentary and/or metamorphic geology). Hence, large beaches are observed continuously along the shore of Gangwon-do, of which coasts consist predominantly of granitic geology. Such continuity declines from Samcheok city to Pohang city. The rock of Gyeonbuk-do is commonly known as sedimentary, deposited between the late Triassic and the early Tertiary Periods. Because few sands are supplied from the upstream areas, sandy beaches unlikely develop along the coasts of the province, only showing a sporadic, discontinuous distribution under Bulguksa granite, granitic gneiss, and some volcanic rocks. Erosion was rarely observed in the beaches where granitic rocks are distributed, whereas merely five beaches seemed to have undergone some level of erosion in non-granitic regions. This is presumably because a larger amount of sands than that which had been eroded away was replenished in areas under granitic geology, while under non-granitic geology having a deficit in sands, no large sandy beaches had formed at first.

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF

Study on the Intrusion Epochs of Younger Granites and their Bearing to Orogenies in South Korea (남한(南韓)의 신기화강암류(新期花崗岩類)의 관입시기(貫入時期)와 지각변동(地殼變動))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 1971
  • The "Younger Granites" in Korea were being believed to be late Cretaceous in age and named "Bulkuksa granites" by all previous works until the writer had discovered Jurassic granite in 1963. The present paper is to prove its validity by age dating on these granites which was carried out by Professor Y. Ueda, Tohoku University, Japan. The age of 37 granites samples from various localities ranges from 68 my to 181 my. Of these 10 samples belonged to early Jurassic, 6 samples to mid-Jurassic, 4 samples to late Jurassic, 5 samples to early Cretaceous, and 12 samples to late Cretaceous in age. It is of the writer's opinion that the granites intruded in from early Jurassic to early Cretaceous age belong to Daebo granites and are syntectonic plutons associated with Daebo orogeny, and only those of late Cretaceous age belong to Bulkuksa granites that were associated with Bulkuksa disturbance. Daebo granites are aligned along NE-SW Sinian direction in the middle parts of Korea and crop out in the cores of folded mountains which were formed by Daebo Orogeny, such as Charyong, Noryong, Sobaek, and Dukyu Ranges. On the contrary Bulkuksa granites are restricted in Kyongsang basin and adjacent few localities in distribution and show no alignment. Granites supposedly associated with other disturbances of post-precambrian Have not been found so far in S. Korea. Age dating of granites has revealed that Daebo orogeny might be continuous from Songrim distur bance of late Triassic age. From this viewpoint, it could be assumed that Daedong system of Jurassic age were deposited in separate intermontain basins while Daebo orogeny was active, so that Daedong system in separate localities in Korea could not been correlated in their lithology as well as stratig raphy.

  • PDF