• Title/Summary/Keyword: Triassic

Search Result 134, Processing Time 0.028 seconds

The Age of the Okcheon Metamorphic Belt-How Much Do We Know? (옥천 변성대의 시기-우리는 얼마만큼 알고 있나?)

  • Kwon, Sung-Tack
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.51-56
    • /
    • 2008
  • The geologic age of the Okcheon metamorphic belt, used to be a longstanding puzzle, has been settled down to Neoproterozoic to Paleozoic with discovery of fossils and isotopic age dating of metavolcanic rocks. As isotopic ages become accumulated, there appeared a controversy over the age of peak metamorphism in the Okcheon metamorphic belt, i.e., a single late Permian-early Triassic metamorphism (CHIME allanite age and U-Pb age of metamorphic zircon), or earlier independent presence of early Permian metamorphism (U-Pb age of allanite within garnet porphyroblast). If we compare the isotopic ages that can represent metamorphism, the data for the latter have much larger error than those of the former with some overlap considering the error limits. It means that, the former, supported by two independent ages, is considered a better representation for the age of metamorphism of the Okcheon metamorphic belt. Therefore, I propose the idea of early Permian metamorphism should better be reserved until conclusive evidence appears. The late Permian-early Triassic metamorphic age suggest that the effect of continental collision influenced much of the middle part of Korean Peninsula, namely, the Imjingang belt, the Gyeonggi massif and the Okcheon belt.

A Study on the Lineament Analysis Along Southwestern Boundary of Okcheon Zone Using the Remote Sensing and DEM Data (원격탐사자료와 수치표고모형을 이용한 옥천대 남서경계부의 선구조 분석 연구)

  • Kim, Won Kyun;Lee, Youn Soo;Won, Joong-Sun;Min, Kyung Duck;Lee, Younghoon
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.459-467
    • /
    • 1997
  • In order to examine the primary trends and characteristics of geological lineaments along the southwestern boundary of Okcheon zone, we carried out the analysis of geological lineament trends over six selected sub-areas using Landsat-5 TM images and digital elevation model. The trends of lineaments is determined by a minimum variance method, and the resulting geological lineament map can be obtained through generalized Hough transform. We have corrected look direction biases reduces the interpretability of remotely sensed image. An approach of histogram modification is also adopted to extract drainage pattern specifically in alluvial plains. The lineament extracting method adopted in this study is very effective to analyze geological lineaments, and that helps estimate geological trends associated various with the tectonic events. In six sub-areas, the general trends of lineaments are characterized NW, NNW, NS-NNE, and NE directions. NW trends in Cretaceous volcanic rocks and Jurassic granite areas may represent tension joints that developed by rejuvenated end of the Early Cretaceous left-lateral strike-slip motion along the Honam Shear Zone, while NE and NS-NNE trends correspond to fault directions which are parallel to the above Shear Zone. NE and NW trends in Granitic Gneiss are parallel to the direction of schitosity, and NS-NNE and NE trends are interpreted the lineation by compressive force which acted by right-lateral strike-slip fault from late Triassic to Jurassic. And in foliated Granite, NE and NNE trends are coincided with directions of ductile foliation and Honam Shear Zone, and NW-NNW trends may be interpreted direction of another compressional foliation (Triassic to Early Jurassic) or end of the Early Cretaceous tensional joints. We interpreted NS-NNE direction lineation is related with the rejuvenated Chugaryung Fault System.

  • PDF

Thermal and uplift histories of Mesozoic granites in Southeast Korea: new fission track evidences

  • Shin, Seong-Cheon;Susumu Nishimura
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.104-121
    • /
    • 1993
  • Fission track (FT) thermochronological analyses on Mesozoic granites provide new information about cooling and uplift histories in Southeast Korea. Twenty-nine new FT sphene, zircon and apatite ages and seven track length measurements are presented for eleven granite samples. Measured mineral ages against assumed closure temperatures yield cooling rates for each sample. Relatively rapid (7-$15^{\circ}C$/Ma) and simple cooling patterns from the middle Cretaceouss (ca. 90-100 Ma) granites are caused mainly by a high thermal contrast between the intruding magma and country rocks at shallow crustal levels (ca. 1-2.5 km-depths). On the contrary, a slow overall cooling (1-$4^{\circ}C$/Ma) of the Triassic to Jurassic granites (ca. 250-200 Ma), emplaced at deep depths (>>9 km), may mainly depend upon very slow denudation of the overlying crust. The uplift history of the Triassic Yeongdeog Pluton in the Yeongyang Subbasin, west of the Yangsan Fault, is characterized by a relatively rapid uplift (~0.4 mm/a) before the total unroofing of the pluton in the earliest Cretaceous (~140 Ma) followed by a subsidence (~0.2mm/a) during the Hayang Group sedimentation. Stability of original FT zircon ages (156 Ma) and complete erasure of apatite ages suggest a range of 3 to 5.5 km for the basin subsidence. Since 120 Ma up to present, the Yeongyang Subbasin has been slowly uplifted (~0.04 mm/a). The FT age patterns of Jurassic granites both from the northeastern wing of the Ryeongnam Massif and from the northern edge of the Pohang-Kampo Block indicate that the two geologic units have been slowly uplifted with a same mean rate (~0.04 mm/a) since early Cretaceous. Estimates of Cenozoic total uplifts since 100 Ma are different: Ryeongnam Massif (~6 km)=Pohang-Kampo Block (~6 km)>Yeongyang Subbasin(~4 km).

  • PDF

Rb-Sr Isotopic Composition of Mesozoic Sancheong Syenite and Its Geologic Implication (중생대 산청섬장암의 Rb-Sr 조성과 의미)

  • Park Kye-Hun;Kim Dong-Yeon;Song Yong-Sun;Cheong Chang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.1 s.43
    • /
    • pp.1-9
    • /
    • 2006
  • Sr isotopic compositions are determined from the syenite of Sancheong area, yielding age of $211{\pm}23(2\sigma)$ Ma and $^{87}Sr/^{86}Sr$ initial ratio of $0.70598{\pm}0.00060$. Such result confirms that Sancheong syenite was emplaced during the Mesozoic around the Triassic-Jurassic boundary. Rather low initial $^{87}Sr/^{86}Sr$ ratio suggests insignificant influence of old crustal materials. There are strong contrast in rock types of plutonic associations between Sancheong-Macheon area and adjacent Hamyang-Geochang area to the north, i.e. syenite-diorite-gabbro and granite-granodiorite respectively. $^{87}Sr/^{86}Sr$ initial ratios also show distinction between these areas. Such differences suggest regional contrast in tectonic environments between them.

Precambrian Geology and Structure of the Central Region of South Korea

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.231-239
    • /
    • 1972
  • The central region of South Korea is composed of Precambrian formations and Jurassic Daebo granites and is divided tectonically into three provinces, that is, the Ok chon geosynclinal zone in the middle, the Kyonggi massif on the north and northwest side, and the Ryongnam massif on the south and southeast side. The general trend of the Okchon geosynclinal zone and the distribution of Daebo granites is northeast, the Sinian direction. The Kyonggi massif is composed of Precambrian Y onchon system, Sangwon system, gneisses, and Daebo granites, and the Ryongnam massif also Precambrian Ryongnam and Yulri systems, gneisses, and Daebo granites. Precambrian formations in both areas are of flysch type sediments and may be roughly correlated with each other. These formations except Sangwon and Yulri systems are thought to be early to middle Precambrian age and have acted as basement for the Okchon geosyncline where late Precambrian Okchon system was deposited. The Okchon geosynclinal zone is divided into paleogeosynclinal zone to southwestern parts where the Okchon system is distributed, and neogeosynclinal zone to northeastern parts where nonmetamorphosed Paleozoic sediments are dominantly cropped out. Both zones are separated by upthrust created by Daebo orogeny of Jurassic period, which continues southwesterly to bind the Okchon geosynclinal zone and the Ryongnam massif at southwestern parts bisecting Korea peninsula diagonally. Three periods of structural development are recognized in the area. Folds and faults of preTriassic age prevail in the Kyonggi massif. Many isoclinal folds and thrusts originated by Jurassic Daebo orogeny are aligned in the Okchon paleogeosynclinal zone paralleling to the geosynclinal axis so that same formation appears repeatedly in narrow strips, whereas fold axis in neogeosynclinal zone trerid west-northwesterly which might be of Triassic in age and modified by later Daebo orogeny. Discontinuity of geology and structure of Okchon geosynclinal zone is attributed to shifting of the geosyncline through geologic time.

  • PDF

Stable isotope and rare earth element geochemistry of the Baluti carbonates (Upper Triassic), Northern Iraq

  • Tobia, Faraj Habeeb
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.975-987
    • /
    • 2018
  • Stable isotope ratios of $^{18}O/^{16}O$ and $^{13}C/^{12}C$ and rare earth elements geochemistry of the Upper Triassic carbonates from the Baluti Formation in Kurdistan Region of Northern Iraq were studied in two areas, Sararu and Sarki. The aim of the study is to quantify the possible diagenetic processes that postdated deposition and the paleoenvironment of the Baluti Formation. The replacement products of the skeletal grains by selective dissolution and neomorphism probably by meteoric water preserved the original marine isotopic signatures possibly due to the closed system. The petrographic study revealed the existence of foraminifers, echinoderms, gastropods, crinoids, nodosaria and ostracods as major framework constituents. The carbonates have micritic matrix with microsparite and sparry calcite filling the pores and voids. The range and average values for twelve carbonate rocks of ${\delta}^{18}O$ and ${\delta}^{13}C$ in Sararu section were -5.3‰ to -3.16‰ (-4.12‰) and -2.94‰ to -0.96‰ (-1.75‰), respectively; while the corresponding values for the Sarki section were -3.69‰ to -0.39‰ (-2.08‰) and -5.34‰ to -2.70‰ (-4.02‰), respectively. The bivariate plot of ${\delta}^{18}O$ and ${\delta}^{13}C$ suggests that most of these carbonates are warm-water skeletons and have meteoric cement. The average ${\Sigma}REE$ content and Eu-anomaly of the carbonates of Sararu sections were 44.26 ppm and 1.03, respectively, corresponding to 22.30 ppm and 0.93 for the Sarki section. The normalized patterns for the carbonate rocks exhibit: (1) non-seawater-like REE patterns, (2) positive Gd anomalies (average = 1.112 for Sararu and 1.114 for Sarki), (3) super chondritic Y/Ho ratio is 31.48 for Sararu and 31.73 for Sarki which are less than the value of seawater. The presence of sparry calcite cement, negative $^{13}C$ and $^{18}O$ isotope values, the positive Eu anomaly in the REE patterns (particularly for Sararu), eliminated Ce anomaly ($Ce/Ce^{\ast}$: 0.916-1.167, average = 0.994 and 0.950-1.010, average = 0.964, respectively), and Er/Nd values propose that these carbonates have undergone meteoric diagenesis. The REE patterns suggest that the terrigenous materials of the Baluti were derived from felsic to intermediate rocks.

A Review on the Stratigraphy, Depositional Age, and Composition of the Chungnam Basin Fills (충남분지 충전물의 층서, 퇴적시기, 조성에 관한 고찰)

  • Lee, Hyojong;Park, Seung-Ik;Choi, Taejin
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.357-366
    • /
    • 2019
  • Deposition of the Daedong Supergroup has been considered to be related with the Triassic Songrim and Jurassic Daebo orogenies. The Chungnam Basin fills is an important sedimentary succession to understand the geological evolution of the Early to Middle Mesozoic Korean Peninsula. Previous paleontological and paleomagnetic studies have suggested the Late Triassic to Early Jurassic sedimentation of the Chungnam Basin fills. However, the orogenic model of the basin development has remained controversial because recently reported zircon U-Pb isotopic ages are not harmonious with the previous studies. This paper aims to review the stratigraphy, depositional age, and composition of the Chungnam Basin fills, together with test of the basin development models.

Petrogeochemical Study on the Igneous Rocks of Southwestern Part of the Sangju Area (상주(尙州) 남서부(南西部)에 분포(分布)하는 화성암류(火成岩類)에 대(對)한 암석지화학적(岩石地化學的) 연구(硏究))

  • Choi, Bok Ryeol;Kim, Yong Jun
    • Economic and Environmental Geology
    • /
    • v.23 no.3
    • /
    • pp.329-342
    • /
    • 1990
  • The purpose of this study is to clarify the nature of the differentiation and petrogenesis of igneous rocks in comparison with experimental results based on petrological and geochemical criteria. Study area is composed of the Precambrian granitic gneiss complex, Triassic meladiorite and biotite granodiorite, Jurassic biotite granite, and Cretaceous quartz porphyry. According to the data of EPMA, the clinopyroxene and orthopyroxene of meladiorite come under salite and hypersthene, respectively. Such results suggests that meladiorite is incipient differentiated products of basic magma under slow cooling condition. The petrochemical data of variation diagram of major element oxides vs. silica and of trace element oxide vs. silica, AMF triangle diagram and trace elements suggests that igneous rocks of study area are plutonic rocks belong to calc alkali rock series of the source of comagma intruded-emplaced in the order of meladiorite, biotite granodiorite and biotite granite by fractional crystallization of magma.

  • PDF

The stratigraphy of the Pyeongan Supergroup of South Korea: A review

  • Lee, Chang-Zin
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.419-429
    • /
    • 2010
  • The Pyeongan Supergroup can be divided into seven lithostratigraphic units (Moscovian to Early Triassic?) in the Samcheok coalfield and four lithostratigraphic units (Bashkirian to Artinskian) in the Yeongwol coalfield of South Korea. On the basis of fusulinid biostratigrapic data in the Yeongwol coalfield, the boundary between the Carboniferous and Permian strata of the Pyeongan Supergroup has been considered as unconformity since the Kasimovian and Gzhelian strata are missing. Protriticites and Triticites, which are the cosmopolitan index fusulinids indicating the Kasimovian and Gzhelian age, are not found from the uppermost part of the Geumcheon and Pangyo Formations. Recently some fusulinids such as Xenostaffella koreaensis, Hanostaffella magna, and Fusulina danyangensis found from the uppermost part of the Geumcheon and Pangyo Formations are recognized as the early Kasimovian-type fusulinids, although the upper Kasimovian- to Gzhelian-type fusulinids are still missing.

The granite in Korean peninsula and its Geotechnical characteristics (한반도에 분포하는 화강암과 화강암반의 지질공학적 특성)

  • Lee, Byung-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.875-883
    • /
    • 2008
  • The amount of granite distribution area occupies about 40 - 50% of Korean Peninsula. The granite irregularly Intruded through preCambrian to Tertiary times but in Jurassic time so called, Daebo granite most widely crops out in Korean Peninsula. In addition to Bulkuksa Grante which intruded at Cretaceous time crops out at the southern part of Korean Peninsula and in northern part Triassic Songrim Granite is distributed. These granites have equigranular texture and are relatively isotropic. Their uniaxial compressive strength is above $1,500kg/cm^2$ and also seismic velocity is over 2,000m/sec. When these rocks receive a weathering action, the feldspar weathers first and the quartz grains remain plentifully to make the "Masato(Korean name)". Also when the granite receives a weathering action, quite often it make sheeting joint which is topographically parallel to the earth surface and also make a (so called, onion structure. These weathering phenomena easily make a land sliding when it is heavy rain and weathering surface is irregular.

  • PDF