• Title/Summary/Keyword: Triangular coordinate

Search Result 26, Processing Time 0.023 seconds

A Study on the modeling and manufacturing of roller gear cam (롤러기어캠 모델링 및 가공에 관한 연구)

  • 조승래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.234-239
    • /
    • 2000
  • In this paper, we developed an automated program for the modeling and manufacturing of three-dimensional roller gear cams. A computer program employing the theory of gearing and coordinate transformation is developed for synthesizing and animating cam mechanisms. A method using wire frame modeling and shading by triangular element is presented, and effectively used for modeling of example with reduced computation time. Then a module for generation NC program a five-axis CNC machine to manufacture roller gear cam is established.

  • PDF

Analysis of 3-Dimensional Electric Fields with Surface Charge Method (표면전하법을 이용한 일반 3차원 전계해석)

  • 박종근;김광수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.9
    • /
    • pp.341-348
    • /
    • 1985
  • This paper deals with a surface charge simulation method of calculating three-dimensional electric fields and capacitance. The principle is to divide the electrode surface into rectangular or triangular elements of which charge density is the linear function of the electrode coordinate and to formulate a linear equation for the coefficients of charge density function and to determine those coefficients by boundary conditions. It has been shown that the method can give satisfactory results for thin rectangular plates where the other methods is difficult to be applied.

  • PDF

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites with Multiple Delamination (다중 층간 분리부가 내재된 복합재 쉘 고차 지그재그 모델의 유한요소 해석)

  • 오진호;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.229-236
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection. which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the buckling problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The accuracy of the present element is demonstrated in the prediction of buckling loads and buckling modes of shells with multiple delaminations. The present shell element should serve as a powerful tool in the prediction of buckling loads and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites Cylinderical Shell with Multiple Delaminations (다중 층간분리부가 있는 복합재 원통쉘의 지그재그 고차이론에 기초한 유한요소 진동해석)

  • Cho Maenghyo;Oh Jinho;Kim Heung-Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.69-72
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection, which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the eigenvalue problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The present shell element should serve as a powerful tool in the prediction of natural frequency and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

Automatic Local Update of Triangular Mesh Models Based on Measurement Point Clouds (측정된 점데이터 기반 삼각형망 곡면 메쉬 모델의 국부적 자동 수정)

  • Woo, Hyuck-Je;Lee, Jong-Dae;Lee, Kwan-H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.335-343
    • /
    • 2006
  • Design changes for an original surface model are frequently required in a manufacturing area: for example, when the physical parts are modified or when the parts are partially manufactured from analogous shapes. In this case, an efficient 3D model updating method by locally adding scan data for the modified area is highly desirable. For this purpose, this paper presents a new procedure to update an initial model that is composed of combinatorial triangular facets based on a set of locally added point data. The initial surface model is first created from the initial point set by Tight Cocone, which is a water-tight surface reconstructor; and then the point cloud data for the updates is locally added onto the initial model maintaining the same coordinate system. In order to update the initial model, the special region on the initial surface that needs to be updated is recognized through the detection of the overlapping area between the initial model and the boundary of the newly added point cloud. After that, the initial surface model is eventually updated to the final output by replacing the recognized region with the newly added point cloud. The proposed method has been implemented and tested with several examples. This algorithm will be practically useful to modify the surface model with physical part changes and free-form surface design.

A variational nodal formulation for multi-dimensional unstructured neutron diffusion problems

  • Qizheng Sun ;Wei Xiao;Xiangyue Li ;Han Yin;Tengfei Zhang ;Xiaojing Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2172-2194
    • /
    • 2023
  • A variational nodal method (VNM) with unstructured-mesh is presented for solving steady-state and dynamic neutron diffusion equations. Orthogonal polynomials are employed for spatial discretization, and the stiffness confinement method (SCM) is implemented for temporal discretization. Coordinate transformation relations are derived to map unstructured triangular nodes to a standard node. Methods for constructing triangular prism space trial functions and identifying unique nodes are elaborated. Additionally, the partitioned matrix (PM) and generalized partitioned matrix (GPM) methods are proposed to accelerate the within-group and power iterations. Neutron diffusion problems with different fuel assembly geometries validate the method. With less than 5 pcm eigenvalue (keff) error and 1% relative power error, the accuracy is comparable to reference methods. In addition, a test case based on the kilowatt heat pipe reactor, KRUSTY, is created, simulated, and evaluated to illustrate the method's precision and geometrical flexibility. The Dodds problem with a step transient perturbation proves that the SCM allows for sufficiently accurate power predictions even with a large time-step of approximately 0.1 s. In addition, combining the PM and GPM results in a speedup ratio of 2-3.

A Study on the modeling of roller gear cam (롤러기어캠의 모델링에 관한 연구)

  • 조승래;이춘만;정원지
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.31-37
    • /
    • 2001
  • In this paper, we developed an automated program for the modeling and simulation of three-dimensional roller gear cam mechanisms. The three-dimensional modeling for a roller-gear cam employs coordinate transformations based on the con-tact condition. the wire frame modeling followed by the shading technique using triangular meshing elements incorporat-ed the to reduce the number of data and computational load. Computer simulations for two kinds of products for rollger-gear cam mechansim illustrate the relative motion between the modeled roller-gear cam and a turret and thus show the effectiveness of the proposed modeling.

  • PDF

Equi-Value Line Program Development for 3-Dimensional Finite Element Models using Personal Computer (개인용 컴퓨터를 이용한 3차원 유한요소 등가곡선 프로그램 개발)

  • Lee, Seok-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.44-52
    • /
    • 1992
  • A post-processor is developed to be effectively usable in the personal computer. 3-dimensional controur lines are shown on the surface of the finite element model and also on the 3-dimensional cutting plane, using the function linearly interpolated onto the triangular elements which are constructed on the surface or sectional polygons. And these polygons are originated from the finite element model, 3-dimensional model is projected on the plane with hidden line removal by comparision technique[6]. The graphic data file is used to increase the protability of the program. It is easy to use in the other computer system if the graphic routine adopted that computer system is developed. The developed program has wide applications in 3-dimensional finite element analysis.

  • PDF

Reconstructing individual hand models from motion capture data

  • Endo, Yui;Tada, Mitsunori;Mochimaru, Masaaki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • In this paper, we propose a new method of reconstructing the hand models for individuals, which include the link structure models, the homologous skin surface models and the homologous tetrahedral mesh models in a reference posture. As for the link structure model, the local coordinate system related to each link consists of the joint rotation center and the axes of joint rotation, which can be estimated based on the trajectories of optimal markers on the relative skin surface region of the subject obtained from the motion capture system. The skin surface model is defined as a three-dimensional triangular mesh, obtained by deforming a template mesh so as to fit the landmark vertices to the relative marker positions obtained motion capture system. In this process, anatomical dimensions for the subject, manually measured by a caliper, are also used as the deformation constraints.

A Study on Analysis of Smelting Slags Produced Reproduction Experiment of Iron Smelting Furnace and Interpretation Method for the Slags (고대 제철로 복원실험 제련 슬래그 분석과 해석 방법에 관한 연구)

  • Kim, Su Jin;Kim, Soo Ki
    • Journal of Conservation Science
    • /
    • v.33 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • This study produced smelting slag through the reproduction of an ancient iron manufacturing technique, with the aim of facilitating a comprehensive understanding of the process by analyzing the slag components. The research suggests an interpretation method using the ratio of the subcomponents relative to the main slag components as an alternative to existing methods. We investigated the component source within the smelting furnace from which the slag is derived by developing an understanding of the tendency between slags. Based on bivariate graph and triangular coordinate data analysis, it was found that a slag can be categorized according to its components. The groups were identified as the ore slag group(centered on the ore), and the clay slag group(centered on clay and granite soil). This research determined that it is possible to estimate the components derived from the slag, depending on which group they belong to or resemble, as shown in Figure 4~7. It was found that a comprehensive understanding of the ratio between the components was more accurate than a simple analysis of the contents, for the interpretation of ancient iron manufacturing processes. This is based on the fact that a higher ratio of $TiO_2$ was detected by the components analysis, and an analysis of all the slag showed that the value of $CaO/SiO_2$ ratio was lower than 0.4, which corresponds to the reproduction experiment condition in which flux was not used.