• Title/Summary/Keyword: Triangular bar

Search Result 24, Processing Time 0.02 seconds

Biomechanical Study of Posterior Pelvic Fixations in Vertically Unstable Sacral Fractures: An Alternative to Triangular Osteosynthesis

  • Chaiyamongkol, Weera;Kritsaneephaiboon, Apipop;Bintachitt, Piyawat;Suwannaphisit, Sitthiphong;Tangtrakulwanich, Boonsin
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.967-972
    • /
    • 2018
  • Study Design: Biomechanical study. Purpose: To investigate the relative stiffness of a new posterior pelvic fixation for unstable vertical fractures of the sacrum. Overview of Literature: The reported operative fixation techniques for vertical sacral fractures include iliosacral screw, sacral bar fixations, transiliac plating, and local plate osteosynthesis. Clinical as well as biomechanical studies have demonstrated that these conventional techniques are insufficient to stabilize the vertically unstable sacral fractures. Methods: To simulate a vertically unstable fractured sacrum, 12 synthetic pelvic models were prepared. In each model, a 5-mm gap was created through the left transforaminal zone (Denis zone II). The pubic symphysis was completely separated and then stabilized using a 3.5-mm reconstruction plate. Four each of the unstable pelvic models were then fixed with two iliosacral screws, a tension band plate, or a transiliac fixation plus one iliosacral screw. The left hemipelvis of these specimens was docked to a rigid base plate and loaded on an S1 endplate by using the Zwick Roell z010 material testing machine. Then, the vertical displacement and coronal tilt of the right hemipelves and the applied force were measured. Results: The transiliac fixation plus one iliosacral screw constructions could withstand a force at 5 mm of vertical displacement greater than the two iliosacral screw constructions (p=0.012) and the tension band plate constructions (p=0.003). The tension band plate constructions could withstand a force at $5^{\circ}$ of coronal tilt less than the two iliosacral screw constructions (p=0.027) and the transiliac fixation plus one iliosacral screw constructions (p=0.049). Conclusions: This study proposes the use of transiliac fixation in addition to an iliosacral screw to stabilize vertically unstable sacral fractures. Our biomechanical data demonstrated the superiority of adding transiliac fixation to withstand vertical displacement forces.

Measurements on Effects of Locations of Obstacles in an Explosion Chamber

  • Han, Jae-Beom;Lee, Young-Soon;Park, Dal-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.68-74
    • /
    • 2008
  • Measurements were performed to investigate the effects on flame and pressure development by varying locations of multiple obstacles in a top-venting explosion chamber. The chamber dimension was 1000 mm in height with a $700\;{\times}\;700\;mm^2$ cross-section and a rectangular vent area of $700\;{\times}\;700\;mm^2$. Three different multiple obstacles with blockage ratio of 30% were used by changing from 200 mm, 500 mm to 800 mm in heights within the chamber. Temporally resolved flame front images were recorded by a high speed camera to investigate the interaction between the propagating flame and the obstacles. The results showed that the triangular bar caused the fastest flame developments at given times whereas the lowest was obtained with the cylindrical bar. It was also found that local flame displacement speeds of different obstacles were sensitive to the locations of obstacles. The local speed becomes larger in going from 200 mm, to 500 mm and to 800 mm in heights. The obstacles in height of 800 mm yielded the highest overpressure whereas the lowest was in height of 200 mm.

  • PDF

An Inverse Analysis of Two-Dimensional Heat Conduction Problem Using Regular and Modified Conjugate Gradient Method (표준공액구배법과 수정공액구배법을 이용한 2차원 열전도 문제의 역해석)

  • Choi, Eui-Rak;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1715-1725
    • /
    • 1998
  • A two-dimensional transient inverse heat conduction problem involving the estimation of the unknown location, ($X^*$, $Y^*$), and timewise varying unknown strength, $G({\tau})$, of a line heat source embedded inside a rectangular bar with insulated boundaries has been solved simultaneously. The regular conjugate gradient method, RCGM and the modified conjugate gradient method, MCGM with adjoint equation, are used alternately to estimate the unknown strength $G({\tau})$ of the source term, while the parameter estimation approach is used to estimate the unknown location ($X^*$, $Y^*$) of the line heat source. The alternate use of the regular and the modified conjugate gradient methods alleviates the convergence difficulties encountered at the initial and final times (i.e ${\tau}=0$ and ${\tau}={\tau}_f$), hence stabilizes the computation and fastens the convergence of the solution. In order to examine the effectiveness of this approach under severe test conditions, the unknown strength $G({\tau})$ is chosen in the form of rectangular, triangular and sinusoidal functions.

Crystal Structures of Fully Dehydrated Zeolite $Cd_6-A$ and of $Rb_{13.5}-A$, the Product of its Reaction with Rubidium, Containing Cationic Clusters

  • Jang, Se-Bok;Kim, Yang;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.236-241
    • /
    • 1994
  • The crystal structures of $Cd_6-A$ evacuated at $2{\times}10^{-6}$ Torr and 750$^{\circ}$C (a=12.216(l) ${\AA}$), and of the product of its reaction with Rb vapor (a= 12.187(l) ${\AA}$), have been determined by single-crystal x-ray diffraction techniques in the cubic space group Pm$\bar{3}$m at 21(l)$^{\circ}$C. Their structures were refined to the final error indices, $R_1$=0.055 and $R_2$=0.067 with 191 reflections, and $R_1$=0.066 and $R_2$=0.049 with 90 reflections, respectively, for which I>3${\sigma}$(I). In dehydrated $Cd_6-A$, six $Cd^{2+}$ ions are found at two different threefold-axis sites near six-oxygen ring centers. Four $Cd^{2+}$ ions are recessed 0.50 ${\AA}$ into the sodalite cavity from the (111) plane at O(3), and the other two extend 0.28 ${\AA}$ into the large cavity from this plane. Treatment at 250 $^{\circ}$C with 0.1 Torr of Rb vapor reduces all $Cd^{2+}$ ions to give $Rb_{13.5^-}$A. Rb species are found at three crystallographic sites: three $Rb^+$ ions lie at eight-oxygen-ring centers, filling that position, and ca. 10.5 $Rb^+$ ions lie on threefold axes, 8.0 in the large cavity and 2.5 in the sodalite cavity. In this structure, ca. 1.5 Rb species more than the 12 $Rb^+$ ions needed to balance the anionic charge of zeolite framework are found, indicating that sorption of $Rb^0$ has occurred. The occupancies observed can be most simply explained by two "unit cell" compositions, $Rb_{12^-}A{\cdot}Rb$ and $Rb_{12^-}A{\cdot}2Rb$, of approximately equal population. In sodalite cavities, $Rb_{12^-}A{\cdot}Rb$ would have a $(Rb_2)^+$ cluster and $Rb_{12^-}A{\cdot}2Rb$ would have a triangular $(Rb_3)^+$ cluster. Each of the atoms of these clusters must bind further through a six-oxygen ring to a large cavity $Rb^+$ to give $(Rb_4)^{3+}$ (linear) and $(Rb_6)^{4+}$ (trigonal). Other unit-cell compositions and other cationic cluster compositions such as $(Rb_8)^{n+}$ may exist.