• 제목/요약/키워드: Triacylglycerols

검색결과 63건 처리시간 0.032초

Reversed-phase 및 $Ag^{+}$-HPLC에 의한 Conjugate Trienoic Acid 함유(含有) Triacylglycerol 분자종(分子種)의 상호분리(相互分離) (Resolution of the Triacylglycerols Containing Conjugate Trienoic Acids into Their Molecular Species by HPLC in the Reversed-phase and Silver Ion Mode)

  • 김성진;우효정;조용계
    • 한국응용과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.197-213
    • /
    • 2001
  • Conjugate trienoic acids (CTA) occurred in triacylglycerols (TGs) of the seed oils of Trichosanthes kirilowii, Momordica charantia and Aleurites fordii, and they were easily converted to their methyl esters in a mixture of sodium methoxide-methanol without any structural destruction. The main fatty acids in triacylglycerol (TG) fraction of the seed oils of Trichosanthes kirilowii are $C_{18:2{\omega}6}$ (32.2 mol %), $C_{18:3{\;}9c.11t,13c}$ (38.0 mol %) and $C_{18:1{\omega}9}$ (11.8 mol %), followed with $C_{16:0}$ (4.8 mol %) and $C_{18:0}$ (3.1 mol %). The TG fraction was resolved into 20 TG molecular species according to the partition number (PN) by reversed-phase (RP)-HPLC. The main TG species were $DT_{c2}$, $MDT_{c}$ and $D_{2}T_{c}$, of which amounts reached 63 mol % of total TG molecular species. The TG sample was fractionated into 11 fractions according to the number of double bond in the molecule by $Ag^{+}-HPLC$ and the species of $DT_{c2}$, $MDT_{c}$ and $D_{2}T_{c}$ were also eluted as main components. The TG species containing CTA showed unusual behaviours in the order of elution by HPLC ; first, TG moleular species of $DT_{c2}$ (D; dienoic acid, $T_{c}$; punicic acid, $T_{ci}$; ${\alpha}-eleostearic$ acid, M ; monoenoic acid, $S_{t}$; stearic acid) was eluted earlier than $Mt_{c2}$, although they have the same PN number of 40, and, secondly, the species of $DT_{ci2}$ with eight double bonds was eluted earlier than that of $D_2T_{ci}$ with seven double bonds. Intact TG of the seed oils of Momordica charantia contained mainly fatty acids such as $C_{18:3{\omega}9c,11t,13t}$ (57.7 mol %), $C_{18:1{\omega}9}$ (17.4 mol %), $C_{18:0}$ (12.3 mol %) and $C_{18:2{\omega}6}$ (10.6 mol %), and was classified into 13 fractions by RP-HPLC. The main TG species were as follows ; $MT_{ci2}$ [$(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$, 39.1 mol %] and $S_{t}T_{ci2}$ [$(C_{18:0})(C_{18:3\;9c,11t,13t})_2$, 33.9 mol %] comprising about 73 mol % of total TG species, accompanied by $DT_{ci2}$ [$(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_{2}$, 7.3 mol %], $D_{2}T_{ci}$ [$ (C_{18:2{\omega}6})_{2}(C_{18:3\;9c,11t,13t})$, 3.6 mol %] and $MDT_{ci}$ [$(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})$, 3.5 mol %]. Simple TG species of $T_{ci3}$ [$(C_{18:3\;9c,11t,13t})_3]$ was present in a small amount of 1.4 mol %, but other simple TG species were not detected. The TG was also resolved into 11 fractions according to the number of double bond by $Ag^{+}-HPLC$, and the species were mainly occupied by $MT_{ci2}$ [$(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$, 39.4 mol %] and $S_tT-{ci2}$ [$(C_{18:0})(C_{18:3\;9c,11t,13t})_{2}$, 35.4 mol %] $DT_{ci2}$ species with eight double bonds was also developed faster than $D_2T_{ci}$ one with seven double bonds as indicated in the analysis of TG of the seed oils of T. kirilowii, and $MT_{ci2}$ species with cis, trans, trans-configurated double bond was eluted earlier than $MT_{c2}$ species with cis, trans, cis-configurated double bond. The main components of fatty acid in total TG fraction isolated from the seed oils of of Aleurites fordii were in the following order ; $C_{18:3\;9c,11t,13t}$ (81.2 mol %)> $C_{18:2{\omega}6}$ (8.5 mol %)> $C_{18:1{\omega}9}$ (5.4 mol %)$. With resolution of the TG by RP-HPLC, eight fractions such as $T_{ci3}$, $Dt_{ci2}$, $D_{2}T_{ci}$, $MT_{ci2}$, $PT_{ci2}$ (P; palmitic acid), $PMT_{ci}$, $PDT_{ci}$ and $S_{t}T_{ci2}$ ($S_{t}$; stearic acid) were isolated, respectively. TG species of $T_{ci3}$ [$(C_{18:3\;9c,11t,13t})_{3}$, 54.2 mol %], $DT_{ci2}$ [$(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_{2}$, 15.0 mol %] and $MT_{ci2}$ [$(C_{18:1{\omega}9})(C_{18:3 9c,11t,13t})_{2}$, 14.8 mol %] were present as main species.

Effect of Overfeeding on Plasma Parameters and mRNA Expression of Genes Associated with Hepatic Lipogenesis in Geese

  • Han, Chunchun;Wang, Jiwen;Xu, Hengyong;Li, Liang;Ye, Jianqiang;Li, Jiang;Zhuo, Weihua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권4호
    • /
    • pp.590-595
    • /
    • 2008
  • The aim of our study was to research the effect of overfeeding on plasma parameters and mRNA expression of genes associated with hepatic lipogenesis in the Sichuan white goose and Landes goose. Fifty-four male Landes geese and 57 male Sichuan white geese were hatched on the same day under the same feeding conditions. After overfeeding for 14 days, (1) extrahepatic adipose tissues grew greatly in the Sichuan white geese, while more lipid accumulated in liver tissue in the Landes geese. (2) Sichuan white geese had a higher plasma concentration of triacylglycerols (TG), lipoproteins and insulin than the Landes geese. However, the Landes geese exhibited higher increase of plasma concentrations of TG, lipoproteins and insulin, with greater decrease of the diacylglycerol acyltransferase 2 (DGAT2) activity and DGAT2 mRNA level and a smller decrease of plasma glucose concentration. In addition, the mRNA level of MTP and LPL in liver was down- and up- regulated by overfeeding, respectively. (3) The correlations between the activity of LPL and the proportions of subcutaneous adipose tissue, abdominal adipose tissue, and liver weight, and the plasma concentration of VLDL were different in the two breeds. (4) The proportion of fatty liver weight was positively correlated to plasma concentrations of VLDL and TG in the overfed Sichuan white geese. Such a relationship did not exist in the Landes geese. (5) The activity of DGAT2 and its mRNA abundance in liver had significant negative correlations with the TG content in liver lipid and plasma insulin level in the Landes geese, while in the Sichuan white geese they had negative correlation (p>0.05) with TG concentration in liver lipid and had significant positive correlation with VLDL and TG concentrations in plasma.

지방 바이오마커를 활용한 북서태평양에서 요각류(Euchaeta sp. and Pleuromamma spp.)의 서식 위도별 영양상태 및 먹이원 연구 (Latitudinal Variation of Nutritional Condition and Diet for Copepod Species, Euchaeta sp. and Pleuromamma spp., from the Northwest Pacific Ocean Using Lipid Biomarkers)

  • 주세종;고아라;이창래
    • Ocean and Polar Research
    • /
    • 제33권spc3호
    • /
    • pp.349-358
    • /
    • 2011
  • In order to ascertain latitudinal variation of lipid contents and compositions in copepods, we collected warm water copepod species (Euchaeta sp. and Pleuromamma spp.) from four different regions from low (sub-tropical) to mid (temperate) latitudes in the Northwest Pacific Ocean. Total lipid contents of Pleuromamma spp. were about 11 $ug{\cdot}ind^{-1}$ with little latitudinal variation, whereas Euchaeta sp. showed slightly higher lipid content (20 $ug{\cdot}ind^{-1}$) than Pleuromamma spp. with latitudinal gradient (low at subtropic and high at temperate). Wax esters, known as the major storage lipid classes, were found to be the dominant lipid classes (accounting for more than 35% of total lipids) in Euchaeta sp., whereas in Pleuromamma spp., phospholipids, known as cellular membrane components, were the dominant lipid classes. However, the exception was specimens from warm pool region exhibiting dominance in storage of lipids as a form of triacylglycerols. Among fatty acids, polyunsaturated fatty acids (PUFA), especially docosahexaenoic acid (DHA : 22:6(n-3)) (about 35% of total fatty acids), were most abundant in Euchaeta sp., while saturated fatty acids (SAFA), specially hexadecanoic acid (16:0) (about 30% of total fatty acids), were most abundant in Pleuromamma spp.. Among the neutral fraction of lipids, phytol, originated from the side chain of chlorophyll, was found in all samples which generally indicate active copepods feeding on algae. While only trace amounts of short-chain fatty alcohols were found in Pleuromamma spp., significant amounts of fatty alcohols were found in Euchaeta sp.. Particularly, significant amounts of long chain monounsaturated fatty alcohols (20:1 and 22:1), generally found in cold water species, were found in Euchaeta sp. from low latitudes. The latitudinal variation of trophic lipid markers in these copepods could be significantly related with in-situ food availability and species-specific diet preference. The result of this study suggests that the lipid contents and compositions in copepods may not only indicate their nutritional condition and feeding ecology but also provide insight into species-specific living strategies under different environmental conditions (i.e. water temperature, food availability).

역상(逆相)-HPLC와 $Ag^+$-HPLC에 의한 잣기름의 트리아실글리세롤분자종(分子種)의 상호분리(相互分離) (Studies on Resolution of the Molecular Species of Triacyl-glycerols in the Seed of Pinus koraiensis by HPLC in the Reverse-phase and Ag-ion Modes.)

  • 우효경;조용계;김성진
    • 한국응용과학기술학회지
    • /
    • 제15권4호
    • /
    • pp.1-9
    • /
    • 1998
  • The lipids from the seeds of Pinus koraiensis mostly composed of triacylglycerols (TGs), in which linoleic acid (46.2 mol%) and oleic acid (25.6 mol%) are present as main components in the fatty acid composition. Surprisingly, they also have unusual fatty acids with ${\Delta}^5$-double bond systems such as ${\Delta}^{5.9.12}-C_{18:3}$ (16.0 mol%), ${\Delta}^{5.9}-C_{18:2}$ (2.3 mol%) and ${\Delta}^{5.11.14}-C_{20:3}$ (0.8 mol%). Saturated fatty acids of palmitic, stearic and arachidic acid were present in less than 8.0 mol%. TG was resolved into 17 fractions by reverse-phase HPLC according to so-called partition number (PN) suggested by Plattner, in which TG molecules with ${\Delta}^{5}$-NMDB acyl chains eluted later than did those with ${\Delta}^{9}$-MDB acyl radicals. $Ag^+$-HPLC separated the TG into 14 fractions more clearly than did those with ${\Delta}^{9}$-MDB acyl radicals. $Ag^+$-HPLC separated the TG into 14 fractions more clearly than did reverse-phase HPLC, and the complexity of ${\Delta}^{5.9.12}-C_{18:3}$ moiety with silver ion impregnated in the column bed was in the level between ${\Delta}^{9.12.15}-C_{18:3}$ ($C_{18:3{\omega}3}$) and $C_{18:2{\omega}6}$ (${\Delta}^{9.12}-C_{18:2}$). In the $Ag^+$-HPLC, it was found that the molecular species having a given-numbered double bonds widely spreaded in the acyl chains eluted earlier than those concentrated in one acyl chain. The main molecular species are $(C_{18:2{\omega}6})_2/{\Delta}^{5.9.12}-C_{18:3}$ (14.8 mol%), $C_{18:1{\omega}9}/C_{18:2{\omega}6})_2$ (12.8 mol%) and $C_{18:1{\omega}9}/C_{18:2{\omega}6}/{\Delta}^{5.9.12}-C_{18:3}$ (10.9 mol%).

초호열성균이 생성하는 phospholipase $A_2$에 관한 연구 (Phospholipase $A_2$ excreted from the cells of hyperthermophilic microbes)

  • 조용계;우효경;김연심
    • 한국응용과학기술학회지
    • /
    • 제16권3호
    • /
    • pp.263-271
    • /
    • 1999
  • We checked the presence of phospholipase $A_2(PLA)_2$ which could split the ester bond at the position 2 in the glycerol backbone of glycerophospholipids, in the cells of hyperthermophiles of Pyrococcus horikoshii and Sulfolobus acidocaldarius. The results obtained are as follows; (1). Pyrococcus horikoshii cells were grown in obligate anaerobic conditions at $95^{\circ}C$ and they needed sulfur as energy source instead of oxygen, while Sulfolobus acidocaldarius species grew well in the aerobic medium (pH 2.5) containing yeast and sucrose at $75^{\circ}C$. (2). Pyrococcus horikoshii cells produced phospholipase $A_2$ in the cell culture media although this species did not show lipase activity at least in the pH range of 1.5 ${\sim}$ 3.5. Sulfolobus acidocaldarius cells produced lipase hydrolyzing triacylglycerols such as triolein, but did not split any kind of phospholipids used as substates. (3). The compound of 1-decanoyl-2-(p-nitrophenylglutaryl) phosphatidylcholine was not suitable for a substrate in this experiment, though frequently used as a subtrate for checking presence of phospholipase $A_2$, for its decomposi-tion in this experiment. The L-${\alpha}$-phosphatidylcholine-${\beta}$-[N-7-nitrobenz-2-oxa-1, 3-diazol]aminohexanoyl-${\gamma}$-hexadecanoyl labelled with a fluorescent material, did not show any migration of acyl chains in the molecule during the reaction with phospholipase $A_2$ under a hot condition. (4). Phospholipase $A_2$ in the cells of Pyrococcus horikoshii, showed the optimum activity at $pH6.7{\sim}7.2$ and $95{\sim}105^{\circ}C$, respectively, and was activated by addition of calcium chloride solution. Andthe phospholipase $A_2$ specifically hydrolyzed glycero-phospholipids such as phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine and phosphatidyl inositol, but could not split phospholipid containing ether bonds in the molecule such as DL -${\alpha}$-phosphatidylcholine-${\beta}$-palmitoyl-${\gamma}$-O-hexadecyl, DL-${\alpha}$-phosphati- dylcholine-${\beta}$- oleoyl-${\gamma}$-O-hexadecyl, DL-phosphatidylcholine-dihexadecyl.

북서태평양에서 난수성(Pleuromamma sp.)과 냉수성(Neocalanus plumchrus) 요각류의 지방 함량 및 구성 분석을 통한 생리/생태 비교 (The Physiological and Ecological Comparisons between Warm (Pleuromamma sp.) and Cold Water Copepod Species (Neocalanus plumchrus) in the Northwestern Pacific Ocean Using Lipid Contents and Compositions)

  • 고아라;주세종;이창래
    • Ocean and Polar Research
    • /
    • 제31권1호
    • /
    • pp.121-131
    • /
    • 2009
  • In an effort to better understand the physiological and ecological differences between warm and cold water copepod species in Korean waters using lipid contents and compositions, two species of copepods (Pleuromamma sp. as a warm water species and Neocalanus plumchrus as a cold water species) were collected from the Northwest Pacific and East Sea/Sea of Japan, respectively. The cold water species showed two fold higher lipid contents than the warm water species (11% vs. 5% of dry weight). Wax esters, known as one of the major storage lipid classes, were found to be the dominant lipid class (accounting for 64% of total lipids) in the cold water species, whereas, in the warm water species, phospholipids, which are known as membrane components, were the dominant lipid class (accounting for 43% of total lipids),with a trace amount of the storage lipids as a form of triacylglycerols (${\leq}1%$ of total lipids). With regard to the fatty acid compositions, saturated fatty acids (SAFA), especially 16:0 (about 30% of total fatty acids), were most abundant in the warm water species, whereas the polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA : 20:5(n-3)) (${\geq}16%$ of total fatty acids), were most abundant in the cold water species. Among the neutral fraction of lipids, phytol, originating from the side chain of chlorophyll and indicative of active feeding on phytoplankton, was detected only in the warm water species. Significant quantities of fatty alcohols were detected in cold water species, particularly long-chain monounsaturated fatty alcohols (i.e. 20:1(n-9) and 22:1(n-11)), which are well known to abound in cold water herbivorous copepods. However, only trace amounts of short-chain fatty alcohols were detected in the warm water species. Twelve different kinds of sterols were detected in these copepod species, with cholest-5-en-$3{\beta}$-ol (cholesterol) and cholesta-5, 24-dien-$3{\beta}$-ol (desmosterol) dominating in cold and warm water species, respectively. In addition, for the warm water species (Pleuromamma sp.), we assessed the latitudinal gradients of lipid contents and compositions using samples from three different latitudinal regions (Philippine EEZ, Japan EEZ, and the East China Sea). Although no latitudinal gradients of lipid contents were detected, the lipid compositions, particularly dietary fatty acid markers, varied significantly with the latitude. The findings of this study confirm that the distribution of lipid contents and compositions in copepods may not only indicate their nutritional condition and diet history, but may also provide insights into their living strategies under different environmental conditions (i.e., water temperature, food availability).

엽록체 지질 소기관의 기능과 지질대사에서의 역할 (Plastoglobule in chloroplast and its role in prenylquinone metabolism)

  • 김현욱;김은하;이경렬;정수진;노경희;김종범
    • Journal of Plant Biotechnology
    • /
    • 제40권3호
    • /
    • pp.125-134
    • /
    • 2013
  • 최근 연구에서 엽록체의 미지의 소기관으로 알려졌던 플라스토글로뷸이 지질 대사에서 중요한 역할을 함이 제시되고 있다. 애기장대 플라스토글로뷸의 프로테옴 단백질 분석은 플라스토글로뷸이 단순히 지질 저장 기관으로써의 기능 뿐아니라 지질 합성 대사에 능동적으로 관여하는 소기관임을 제시하고 있다. 애기장대 플라스토글로뷸에서 34개의 단백질이 발견되었다. 이들을 세 그룹으로 나누어 보면 구조단백질인 플라스토글로불린과 엽록체 대사에 관여하는 효소, 그리고 기능이 미확인된 단백질로 구분 된다. 이들 단백질 유전자의 돌연변이체와 리피도믹스 분석으로 이들 단백질의 기능 규명 연구가 필요하다. 토코페롤 합성의 마지막 단계에 관여하는 VTE1과 VTE4는 엽록체에서 각기 다른 위치에 존재하여 VTE1은 플라스토글로뷸에 존재하나 VTE4는 엽록체 내막에 존재한다. 이 같은 사실은 프레닐퀴논 대사물질이 엽록체 내에서 이동할 가능성을 시사한다. 플라스토글로뷸이 엽록체의 기능을 유지하는데 있어 필수적인지에 대한 유전학 연구가 앞으로 진행되어야 한다. 다양한 스트레스와 발달단계에 따른 플라스토글로뷸의 프로테옴 분석은 지질대사에서 중요한 기능을 하는 신규 단백질을 발견하는데 도움을 줄 것이다. 지금까지 결과로는 플라스토글로뷸은 프레릴퀴논 대사에 있어서 교차로 역할을 함을 제안하고 있다.

종실유(seeds oil)의 위치별 지방산 및 트리아실글리세롤의 조성 연구 (Study on the Positional Distribution of Fatty Acids, and Triacylglycerol Separation, of Seed Oils)

  • 문준희;황윤익;이기택
    • 한국식품저장유통학회지
    • /
    • 제16권5호
    • /
    • pp.726-733
    • /
    • 2009
  • 본 연구에서는 6종류의 종실에서 기름을 착유하여 조지방 함량(crude fat content) 측정 및 총 지방산 조성과 위치별 지방산 조성을 비교 분석 하였으며, triacylglycerol(TAG)의 조성과 tocopherol 함량을 분석하였다. Folch법을 이용하여 분석된 조지방 함량은 들깨 21.64%, 홍화씨 13.85%, 고추씨 9.60%, 석류씨 8.85%, 녹두 2.25%, 결명자 2.00%로 나타났다. 추출된 종실유의 지방산 분석결과 불포화 지방산인 linoleic acid(C18:2)가 81.57 wt%~46.17 wt%로 가장 높은 비중을 차지하였으며, sn-2 위치의 지방산 조성에서도 linoleic acid의 함량이 88.30 wt%~15.99 wt%로 높은 함량을 나타내었다. Triacylglycerol(TAG)의 조성은 reversed-phase HPLC를 이용하여 분석하였으며 partition number(PN)=36~48의 분포를 보였다. Total tocopherol의 함량은 석류씨에서 가장 높은 377.74 mg /100 g으로 나타났으며 이 외에 각각 녹두(141.16 mg/100 g), 결명자(107.23 mg/100 g), 고추씨(33.88 mg/100 g), 들깨(30.05 mg/100 g), 홍화씨(29.80 mg/100 g) 순으로 측정되었다.

중수소화(重水素化), Pentafluorobenzyl화(化)와 GLC-Mass Spectrometry에 의한 Conjugate Trienoic Acid함유(含有) Triacylglycerol 분자종(分子種)의 입체특이적 분석(分析) (Stereospecific Analysis of the Molecular Species of the Triacylglycerols Containing Conjugate Trienoic Acids by GLC-Mass Spectrometry in Combination with Deuteration and Pentafluorobenzyl Derivatization Techniques)

  • 우효경;김성진;조용계
    • 한국응용과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.214-232
    • /
    • 2001
  • CTA ester bonds in TG molecules were not attacked by pancreatic lipase and lipases produced by microbes such as Candida cylindracea, Chromobacterium viscosum, Geotricum candidium, Pseudomonas fluorescens, Rhizophus delemar, R. arrhizus and Mucor miehei. An aliquot of total TG of all the seed oils and each TG fraction of the oils collected from HPLC runs were deuterated prior to partial hydrolysis with Grignard reagent, because CTA molecule was destroyed with treatment of Grignard reagent. Deuterated TG (dTG) was hydrolyzed partially to a mixture of deuterated diacylglycerols (dDG), which were subsequently reacted with (S)-(+)-1-(1-naphthyl)ethyl isocyanate to derivatize into dDG-NEUs. Purified dDG-NEUs were resolved into 1, 3-, 1, 2- and 2, 3-dDG-NEU on silica columns in tandem of HPLC using a solvent of 0.4% propan-1-o1 (containing 2% water)-hexane. An aliquot of each dDG-NEU fraction was hydrolyzed and (fatty acid-PFB ester). These derivatives showed a diagnostic carboxylate ion, $(M-1)^{-}$, as parent peak and a minor peak at m/z 196 $(PFB-CH_{3})^{-}$ on NICI mass spectra. In the mass spectra of the fatty acid-PFB esters of dTGs derived from the seed oils of T. kilirowii and M. charantia, peaks at m/z 285, 287, 289 and 317 were observed, which corresponded to $(M-1)^{-}$ of deuterized oleic acid ($d_{2}-C_{18:0}$), linoleic acid ($d_{4}-C_{18:0}$), punicic acid ($d_{6}-C_{18:0}$) and eicosamonoenoic acid ($d_{2}-C_{20:0}$), respectively. Fatty acid compositions of deuterized total TG of each oil measured by relative intensities of $(M-1)^-$ ion peaks were similar with those of intact TG of the oils by GLC. The composition of fatty acid-PFB esters of total dTG derived from the seed oils of T. kilirowii are as follows; $C_{16:0}$, 4.6 mole % (4.8 mole %, intact TG by GLC), $C_{18:0}$, 3.0 mole % (3.1 mole %), $d_{2}C_{18:0}$, 11.9 mole % (12.5 mole %, sum of $C_{18:1{\omega}9}$ and $C_{18:1{\omega}7}$), $d_{4}-C_{18:0}$, 39.3 mole % (38.9 mole %, sum of $C_{18:2{\omega}6}$ and its isomer), $d_{6}-C_{18:0}$, 41.1 mole % (40.5 mole %, sum of $C_{18:3\;9c,11t,13c}$, $C_{18:3\;9c,11t,13r}$ and $C_{18:3\;9t,11t,13c}$), $d_{2}-C_{20:0}$, 0.1 mole % (0.2 mole % of $C_{20:1{\omega}9}$). In total dTG derived from the seed oils of M. charantia, the fatty acid components are $C_{16:0}$, 1.5 mole % (1.8 mole %, intact TG by GLC), $C_{18:0}$, 12.0 mole % (12.3 mole %), $d_{2}-C_{18:0}$, 16.9 mole % (17.4 mole %, sum of $C_{18:1{\omega}9}$), $d_{4}-C_{18:0}$, 11.0 mole % (10.6 mole %, sum of $C_{18:2{\omega}6}$), $d_{6}-C_{18:0}$, 58.6 mole % (57.5 mole %, sum of $C_{18:3\;9c,11t,13t}$ and $C_{18:3\;9c,11t,13c}$). In the case of Aleurites fordii, $C_{16:0}$; 2.2 mole % (2.4 mole %, intact TG by GLC), $C_{18:0}$; 1.7 mole % (1.7 mole %), $d_{2}-C_{18:0}$; 5.5 mole % (5.4 mole %, sum of $C_{18:1{\omega}9}$), $d_{4}-C_{18:0}$ ; 8.3 mole % (8.5 mole %, sum of $C_{18:2{\omega}6}$), $d_{6}-C_{18:0}$; 82.0 mole % (81.2 mole %, sum of $C_{18:3\;9c,11t,13t}$ and $C_{18:3 9c,11t,13c})$. In the stereospecific analysis of fatty acid distribution in the TG species of the seed oils of T. kilirowii, $C_{18:3\;9c,11t,13r}$ and $C_{18:2{\omega}6}$ were mainly located at sn-2 and sn-3 position, while saturated acids were usually present at sn-1 position. And the major molecular species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})_{2}$ and $(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})$ were predominantly composed of the stereoisomer of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:3\;9c,11t,13c}$, $sn-3-C_{18:3\;9c,11t,13c}$, and $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13c}$, respectively, and the minor TG species of $(C_{18:2{\omega}6})_{2}(C_{18:3\;9c,11t,13c})$ and $ (C_{16:0})(C_{18:3\;9c,11t,13c})_{2}$ mainly comprised the stereoisomer of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13c}$ and $sn-1-C_{16:0}$, $sn-2-C_{18:3\;9c,11t,13c}$, $sn-3-C_{18:3\;9c,11t,13c}$. The TG of the seed oils of Momordica charantia showed that most of CTA, $C_{18:3\;9c,11t,13r}$, occurred at sn-3 position, and $C_{18:2{\omega}6}$ was concentrated at sn-1 and sn-2 compared to sn-3. Main TG species of $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{18:0})(C_{18:3\;9c,11t,13t})_{2}$ were consisted of the stereoisomer of $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{18:0}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$, respectively, and minor TG species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})_{2}$ and $(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})$ contained mostly $sn-1-C_{18:2{\omega6}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13t}$. The TG fraction of the seed oils of Aleurites fordii was mostly occupied with simple TG species of $(C_{18:3\;9c,11t,13t})_{3}$, along with minor species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_{2}$, $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{16:0})(C_{18:3\;9c,11t,13t})$. The sterospecific species of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:3\;9c,11t,13t}$, sn-3-C_{18:3\;9c,11t,13t}$, $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{16;0}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ are the main stereoisomers for the species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_2$, $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{16:0})(C_{18:3\;9c,11t,13t})$, respectively.

유지방의 특성과 변화 (Characterization and Modification of Milk Lipids)

  • 여영근;최병국;임아영;김효정;김수민;김대곤
    • Journal of Dairy Science and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.119-136
    • /
    • 1998
  • 젖은 모든 새로 태어난 동물의 많은 필수영양소와 에너지를 공급해 주며, 유제품의 가공에 영향을 주는 독특한 물리적 특성을 지니고 있다. 본 연구에서는 동물의 유지방에 존재하는 주요 혹은 미량 성분의 조성과 구조를 비교하고, 갖 태어난 어린 동물의 영양요구량과 관련된 연구결과를 검토하고자 한다. 젖의 내용물과 조성은 동물의 종류에 따라 매우 다양하며, 이는 다양한 환경에서 적응하기 위한 진화과정에 의한 것으로 알려져 있다. 동물에 따라 젖의 지방종의 분포는 유사하지만 지방산의 조성은 일반적으로 매우 복잡하고 특이하다. 이는 각종 동물의 식이에서 오는 지방산과 유선에서 생합성된 지방산의 성격이 서로 다르기 때문이다. 특징적으로 젖의 지방산은 다른 조직에서는 발견되지 않는 짧은 사슬지방산과 중간 사슬지방산을 함유하고 있으나, 대부분의 동물에서 젖의 주요 지방인 중성지방은 구조적으로 매우 유사한 경향을 보이고 있다. 우유는 어린 동물에 많은 필수영양소와 에너지를 공급해준다. 이러한 영양소들은 우유가공 중 많은 물리적 특성에 영향을 준다. 우유의 주요물질과 미량물질을 비교함으로써 신생동물에 영양요구량을 예견할 수도 있다. 우유의 조성분은 동물에 따라 상당히 다르며 그것은 주로 환경에 적응하기 위해서 진화된 과정 중에 생겨난 것이다. 우유의 지방종 분포는 비슷하지만 지방산의 조성은 일반적으로 매우 복잡하고 특성이 있다. 이들 지방산 유선에서 합성되거나 사료섭취에 의한 것이다. 특징적으로 우유에서 발견되는 짧은 지방산과 긴 사슬의 지방산은 다른 조직에서는 잘 발견되지 않는다. 우유에 주요 지방인 중성지질은 동물의 종류에 따라서 매우 다양하지만 구조는 비슷하다. 실제로 우유 중의 지방구 형성과정은 잘 알려져 있지 않으나 세포의 ER로 부터 유례된 TG를 함유한 소포체가 지방구의 핵을 이룬다는 지적이 있다. 최근에는 각종 혈관질환관련 질병의 증가로 우유의 지방산을 해양동물에서 온 EPA나 DHA와 같은 불포화지방산으로 대체하고자 하는 연구가 많이 이루어지고 있다.

  • PDF