• Title/Summary/Keyword: Triacetin

Search Result 22, Processing Time 0.017 seconds

Elimination of Saturated Fatty Acids, Toxic Cyclic nonapeptide and Cyanogen Glycoside Components from Flax Seed Oil

  • Choi, Eun-Mi;Kim, Jeung-Won;Pyo, Mi-Kyung;Jo, Sung-Jun;Han, Byung-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • Flax seed(Linseed, Linum usitatissimum L.) and its oil, a richest source of alpha-linolenic acid(ALA)(${\omega}-3$), contain saturated fatty acids, neurotoxic cyanogen glycosides and immuno-suppressive cyclic-nonapeptides. Present paper describes the development of two chemical processes, Process-A and -B, to remove saturated fatty acids and to destroy cyclic nonapeptides and cyanogen glycosides from flax seed oil. Process-A consists of three major steps, i.e., extraction of fatty acid mixture by alkaline saponification, removal of saturated fatty acid by urea-complexation, and triglyceride reconstruction of unsaturated fatty acid via fatty acyl-chloride activation using oxalyl chloride. Process-B consists of preparation of fatty acid ethyl ester by transesterification, elimination of saturated fatty acid ester by urea-complexation, and reconstruction of triglyceride by interesterification with glycerol-triacetate (triacetin). The destruction of lipophilic cyclic nonapeptide during saponification or transesterification processes could be demonstrated indirectly by the disappearance of antibacterial activity of bacitracin, an analogous cyclic-decapeptide. The cyanogen glycosides were found only in the dregs after hexane extraction, but not in the flax seed oil. The reconstructed triglyceride of flax seed oil, obtained by these two different pathways after elimination of saturated fatty acid and toxic components, showed agreeable properties as edible oil in terms of taste, acid value, iodine and peroxide value, glycerine content, and antioxidant activity.

Preparation of Cellulose Diacetate/Ramie Fiber Biocomposites by Melt Processing (용융가공법을 이용한 셀룰로오스 디아세테이트/라미섬유 천연복합체의 제조)

  • Lee Sang Hwan;Lee Sang Yool;Nam Jae Do;Lee Youngkwan
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.70-74
    • /
    • 2006
  • Plasticized cellulose diacetate(CDA) was prepared by homogenizing cellulose diacetate(CDA), triacetin(TA) and epoxidized soybean oil (ESO) in a high-speed mixer, then the CDA mixture was mixed with ramie fiber to produce a green composite material. In DMA analysis, the glass transition temperature of plasticized CDA and the composite was observed at $85\;^{\circ}C\;and\;140\;^{\circ}C$, respectively. A composite reinforced with alkali treated ramie fiber exhibited significantly higher mechanical properties, such as $15\;^{\circ}C$ increase in tensile strength as well as $41\;^{\circ}C$ increase in Young's modulus when compared with commercial polypropylene. In the SEM image analysis, much enhanced adhesion between plasticized CDA and alkali treated ramie fiber (AIRa) was observed.