• 제목/요약/키워드: Tri-n-octylphosphine oxide (TOPO)

검색결과 3건 처리시간 0.019초

Synergistic Extraction of Palladium(Ⅱ) with Thenoyltrifloroacetone and Tri-n-octylphosphine Oxide

  • 이상호;정구순
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권6호
    • /
    • pp.479-483
    • /
    • 1995
  • The synergistic extraction of palladium(Ⅱ) was studied with 1,2-dichloroethane containing thenoyltrifluoroacetone (TTA; HA) and tri-n-octylphosphine oxide (TOPO; S). The main composition of synergistic adduct extracted into 1,2-dichloroethane phase was found to be PdA2S2. The equilibrium constants of the synergistic reaction were calculated. The application of this method to synthetic mixture for the separation of Pd from Pt was developed.

Optimization and Evaluation of Organic Acid Recovery from Kraft Black Liquor Using Liquid-Liquid Extraction

  • Kwon, Hee Sun;Um, Byung Hwan
    • Korean Chemical Engineering Research
    • /
    • 제54권6호
    • /
    • pp.753-761
    • /
    • 2016
  • Liquid-liquid extraction (LLE) can be used for the recovery of acetic acid from black liquor prior to bioethanol fermentation. Recovery of value-added chemicals such as acetic-, formic- and lactic acid using LLE from Kraft black liquor was studied. Acetic acid and formic acid have been reported to be strong inhibitors in fermentation. The study elucidates the effect of three reaction parameters: pH (0.5~3.5), temperature ($25{\sim}65^{\circ}C$), and reaction time (24~48 min). Extraction performance using tri-n-octylphosphine oxide as the extractant was evaluated. The maximum acetic acid concentration achieved from hydrolyzates was 69.87% at $25^{\circ}C$, pH= 0.5, and 36 min. Factorial design was used to study the effects of pH, temperature, and reaction time on the maximum inhibitor extraction yield after LLE. The maximum potential extraction yield of acetic acid was 70.4% at $25.8^{\circ}C$, pH=0.6 and 37.2 min residence time.

Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents

  • Pham, Thi Thu Huong;Kim, Tae Hyun;Um, Byung-Hwan
    • Korean Chemical Engineering Research
    • /
    • 제53권6호
    • /
    • pp.695-702
    • /
    • 2015
  • Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at $25^{\circ}C$ using a synthetic fermentation broth comprising $20.0g\;l^{-1}$ acetic acid and $5.0g\;l^{-1}$ ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.