• Title/Summary/Keyword: Tri-butyl-phosphate (TBP)

Search Result 20, Processing Time 0.022 seconds

Extraction Behavior of Uranyl Ion From Nitric Acid Medium by TBP Extractant in Ionic Liquid

  • Kim, Ik-Soo;Chung, Dong-Yong;Lee, Keun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.457-464
    • /
    • 2020
  • In this study, extraction of uranium(VI) from an aqueous nitric acid solution was investigated using tri-n-butyl phosphate (TBP) as an extractant in an ionic liquid, 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide ([Cnmim][Tf2N]). The distribution ratio of U(VI) in 1.1 M TBP/[Cnmim][Tf2N] was significantly high when the concentration of nitric acid was low. The value of the distribution ratio decreased as the concentration of the nitric acid increased at lower acidities, and then increased with a nitric acid concentration of up to 8 M. This can be attributed to the different extraction mechanisms of U(VI) based on nitric acid concentrations. Thus, a cation exchange at low acidity levels and an ion-pair extraction at high acidity levels were suggested as the extraction mechanism of U(VI) in the TBP/[Cnmim][Tf2N] system.

Separation of Fission Product Elements from Synthetic Dissolver Solutions of Spent Pressurized Water Reactor Fuels by $TBP/XAD-16/HNO_3$Extraction Chromatography ($TBP/XAD-16/HNO_3$추출 크로마토그래피에 의한 모의 사용후핵연료 용해용액 중 미량 핵분열생성물 원소의 분리)

  • Lee, Chang Heon;Choi, Kwang Soon;Kim, Jung Suk;Choi, Ke Chon;Jee, Kwang Yong;Kim, Won Ho
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.304-311
    • /
    • 2001
  • A study has been carried out on the extraction chromatographic separation of fission products from spent pressurized water reactor (PWR) fuels for inductively coupled plasma atomic emission spectrometric analysis. Impregnation capacity of tri-n-butyl phosphate (TBP), which is well known as an extractant in the field of uranium separation from various nuclear grade materials, on Amberlite XAD polymeric macroporous support materials was measured. Amberlite XAD-16 of which the surface area is the highest was selected as a support material because its TBP impregnation capacity was the largest in Amberlite XADs. Sorption behaviour of this TBP impregnated resin was investigated for the fission product elements using acidic solutions simulated for dissolver solutions of spent PWR fuels. The parameters affecting the performance of the separation system were optimized. The fission product elements studied excluding Pd and Ru were quantitatively recovered with the precision of less than 3.1%.

  • PDF

Recovery of Golden yellow and Cibacron LSG dyes from aqueous solution by bulk liquid membrane technique

  • Muthuraman, G;Ali, P. Jahfar
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.243-252
    • /
    • 2012
  • Tri-n-butyl phosphate (TBP) was used as carrier for the transport of Golden yellow and Cibacron LSG dyes through a hexane bulk liquid membrane. The transport efficiency of dyes by TBP was investigated under various experimental conditions such as pH of the feed phase (dyes solution), concentration of the receiving phase (NaOH solution), concentration of TBP in membrane, rate of stirring, effect of transport time, type of solvent, dye concentration in feed phase, effect of temperature.. The maximum transport dyes occurs at ratio of 1:1 TBP-hexane At pH 3.0 0.1 (feed phase) the transport dyes decreased. At high stirring speed (300 rpm) the dyes transport from the feed phase to the strip phase was completed within 60 minutes at $27^{\circ}C$. Under optimum conditions: Feed phase 100 mg/L dyes solution at pH 1.0 0.1, receiving phase 0.1 mol/L NaOH solution, membrane phase 1:1 TBP-hexane , Stirring speed 300 rpm and temperature $27^{\circ}C$, the proposed liquid membrane was applied to recover the textile effluent.

Determination of the Trace Elements in $UO_2$ Powder by ICP-AES Directyl Coupled with Extraction Chromatography (추출크로마토그래피와 유도결합플라스마 원자방출분광법을 이용한 이산화우라늄분말 중 미량금속불순물 분석)

  • Choi, Kwang-Soon;Lee, Chang-Heon;Pyo, Hyung-Yeal;Han, Sun-Ho;Suh, Moo-Yul;Eom, Tae-Yoon;Lee, Gae-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.9
    • /
    • pp.813-819
    • /
    • 1993
  • An ICP-AES system directly connected with a separation column was used in order to determine the trace elements in $UO_2$ powder promptly and reduce the volume of the waste solution. The outlet of a separation column, which was filled with Teflon powder ($330\;{\mu}m$) coated with tri-n-butyl phosphate (TBP) as extractant, was directly connected with sample injection tube of ICP-AES. Eleven elements including molybdenum in $UO_2$ powder were separated and determined simultaneously. Recoveries of these elements were $91{\sim}110%$ and these results were agreed with those of solvent extraction methods. This method was applicable to quality control in manufacturing nuclear fuel.

  • PDF

A Review on the Application of Ionic Liquids for the Radioactive Waste Processing (방사성 폐기물 처리를 위한 이온성 액체 활용)

  • Park, Byung Heung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.45-57
    • /
    • 2014
  • Academic interests in ionic liquid (IL) technologies have been extended to the nuclear industry and the applicability of ionic liquids for processing radioactive materials have been investigated by many researchers. A number of studies have reported interesting results with respect to the spectroscopic and electrochemical behaviors of metal elements included in spent nuclear fuels. The measured and observed properties of metal ions in TBP(tri-butyl phosphate) dissolved ILs have led the development of alternative technologies to traditional aqueous processes. On the other hand, the electrochemical deposition of metal ions in ILs have been investigated for the application of the solvents to aqueous as well as to non-aqueous processes. In this work, a review on the application of ILs in nuclear fuel cycle is presented for the purpose of categorizing and summarizing the notable researches on ILs.

Removal Characteristics of Cu(II) ion in Aqueous Solution by Solid-Phase Extractant Immobilized D2EHPA and TBP in PVC (D2EHPA와 TBP를 PVC에 고정화한 고체상 추출제를 사용한 수용액 중의 Cu(II) 이온 제거특성)

  • Kam, Sang-Kyu;Lee, Song-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Removal characteristics of Cu(II) ions by solid-phase extractant immobilized D2EHPA and TBP in PVC were investigated. Cu(II) ion concentrations in the solution and removal capacity of Cu(II) ion according to operation time were compared. The lower the initial concentration of Cu(II) ion in aqueous solution was, the removal capacity of Cu(II) ion by solid-phase extractant was increased relatively. The bigger the initial concentration of Cu(II) ion was, the removal capacity of Cu(II) ion was increased relatively. The pseudo-second-order kinetics according to operation time was showed more satisfying results than the pseudo-first-order kinetics for the removal velocity of Cu(II) ion. The removal capacity of Cu(II) ion was 0.025 mg/g in aqueous solution of pH 2, but the removal capacity of Cu(II) ion was increased to 0.33 mg/g mg/g in aqueous solution of pH 4 according to increasing pH.

Stripping of Fe(III) from the Loaded Mixture of D2EHPA and TBP with Sulfuric Acid Containing Reducing Agents

  • Liu, Yang;Nam, Sang-Ho;Lee, Manseung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2109-2113
    • /
    • 2014
  • Solvent extraction of Fe(III) from chloride solution by using a mixture of D2EHPA (Di-(2-ethylhexyl)-phosphoric acid) and TBP (Tri-butyl phosphate) and the reductive stripping of Fe(III) from the loaded organic were investigated. Quantitative extraction of Fe(III) from the solution (Fe concentration = 90 g/L) was accomplished in two cross-current extraction stages by using the mixture of D2EHPA and TBP. In order to facilitate the stripping efficiency, a reductive stripping method was employed by using $H_2SO_3$ or $Na_2SO_3$ as a reducing agent. The addition of $H_2SO_4$ into reducing agents led to improvement in the stripping efficiency while high concentration acid would suppress it. Both of the mixtures of $H_2SO_4+H_2SO_3$ and $H_2SO_4+Na_2SO_3$ showed good efficiency for the stripping of Fe(III), while the latter was recommended as the stripping solution based on the economics and experimental condition.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

Effects of Co-Existent Additives and the Role of Reacted Surface Film on the Friction with an Organo-Molybdenum Compound

  • Kim, Young-Hwan
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.43-50
    • /
    • 1994
  • In order to elucidate the effects of co-existing additives (S$_{8}$, TBP: Tri butyl phosphate, ZnDTP: Zinc-dialkyl dithiophosphate) and the role of reacted surface film on the friction behavior of MoDTP (molybdenum dialkyl dithiophosphate), a friction experiment using a dual circular pipe edge surface type friction tester and XPS (X-ray photoelectronic spectrum) surface analysis were conducted. Friction reduction with MoDTP lubricant was proved to be greatly influenced by co-existing additive species. It was dependent on the properties of the film formed through the reaction between the additive and the surface. Phosphate film reduced the friction coefficient of MoDTP through suppression of diffusion of Mo compounds towards the metal substrate. On the other hand, sulfate film, which is inherently rich in lattice defects, did not lead to any appreciable friction reduction with MoDTP since the diffusion of the Mo compound towards the metal substrate was not effectively suppressed. With ZnDTP additive, the sulfide film formed through decomposition greatly influenced the lubricating performance of MoDTP. As such, properties of surface films formed from additives were proved to yield significant influence on the lubrication performance of MoDTP.

Application of Solvent Extraction to the Treatment of Industrial Wastes

  • Shibata, Junji;Yamamoto, Hideki
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.259-263
    • /
    • 2001
  • There are several steps such as slicing, lapping, chemical etching and mechanical polishing in the silicon wafer production process. The chemical etching step is necessary to remove damaged layer caused In the slicing and lapping steps. The typical etching liquor is the acid mixture comprising nitric acid, acetic acid and hydrofluoric acid. At present, the waste acid is treated by a neutralization method with a high alkali cost and balky solid residue. A solvent extraction method is applicable to separate and recover each acid. Acetic acid is first separated from the waste liquor using 2-ethlyhexyl alcohols as an extractant. Then, nitric acid is recovered using TBP(Tri-butyl phosphate) as an extractant. Finally hydrofluoric acid is separated with the TBP solvent extraction. The expected recovered acids in this process are 2㏖/l acetic acid, 6㏖/1 nitric acid and 6㏖/l hydrofluoric acid. The yields of this process are almost 100% for acetic acid and nitric acid. On the other hand, it is important to recover and reuse the metal values contained in various industrial wastes in a viewpoint of environmental preservation. Most of industrial products are made through the processes to separate impurities in raw materials, solid and liquid wastes being necessarily discharged as industrial wastes. Chemical methods such as solvent extraction, ion exchange and membrane, and physical methods such as heavy media separation, magnetic separation and electrostatic separation are considered as the methods for separation and recovery of the metal values from the wastes. Some examples of the application of solvent extraction to the treatment of wastes such as Ni-Co alloy scrap, Sm-Co alloy scrap, fly ash and flue dust, and liquid wastes such as plating solution, the rinse solution, etching solution and pickling solution are introduced.

  • PDF