• 제목/요약/키워드: Trend of Climate Change

검색결과 400건 처리시간 0.03초

Past and Future Regional Climate Change in Korea

  • Kwon, Won-Tae;Park, Youngeun;Min, Seung-Ki;Oh, Jai-Ho
    • 한국제4기학회지
    • /
    • 제17권2호
    • /
    • pp.161-161
    • /
    • 2003
  • During the last century, most scientific questions related to climate change were focused on the evidence of anthropogenic global warming (IPCC, 2001). There are robust evidences of warming and also human-induced climate change. We now understand the global, mean change a little bit better; however, the uncertainties for regional climate change still remains large. The purpose of this study is to understand the past climate change over Korea based on the observational data and to project future regional climate change over East Asia using ECHAM4/HOPE model and MM5 for downscaling. There are significant evidences on regional climate change in Korea, from several variables. The mean annual temperature over Korea has increased about 1.5∼$1.7^{\circ}C$ during the 20th century, including urbanization effect in large cities which can account for 20-30% of warming in the second half of the 20th century. Cold extreme temperature events occurred less frequently especially in the late 20th century, while hot extreme temperature events were more common than earlier in the century. The seasonal and annual precipitation was analyzed to examine long-term trend on precipitation intensity and extreme events. The number of rainy days shows a significant negative trend, which is more evident in summer and fall. Annual precipitation amount tends to increase slightly during the same period. This suggests an increase of precipitation intensity in this area. These changes may influence on growing seasons, floods and droughts, diseases and insects, marketing of seasonal products, energy consumption, and socio-economic sectors. The Korean Peninsular is located at the eastern coast of the largest continent on the earth withmeso-scale mountainous complex topography and itspopulation density is very high. And most people want to hear what will happen in their back yards. It is necessary to produce climate change scenario to fit forhigh-resolution (in meteorological sense, but low-resolution in socio-economic sense) impact assessment. We produced one hundred-year, high-resolution (∼27 km), regional climate change scenario with MM5 and recognized some obstacles to be used in application. The boundary conditions were provided from the 240-year simulation using the ECHAM4/HOPE-G model with SRES A2 scenario. Both observation and simulation data will compose past and future regional climate change scenario over Korea.

  • PDF

Envi-Met.을 이용한 도심 대기경계층 내 확산장 변화 수치 모의 (Diffusion Simulation Using Envi-Met. in Urban Planetary Boundary Layer)

  • 최현정
    • 한국기후변화학회지
    • /
    • 제7권3호
    • /
    • pp.357-371
    • /
    • 2016
  • Buildings in the city acts as a cause of distorted wind direction, wind speed, causing the stagnation of the air flow. In the recent trend of climate change can not but consider the temperature rise of the urbanization. This study was aimed to analyze the thermal comfort of planetary boundary layer in different artificial constructions areas which has a direct impact on urban climate, and estimating the warming phenomena. Envi-met model was used to consider the urban structure associated with urban growth in order to precisely determine the impact of the building on the city weather condition. The analyzed values of thermal comfort index were temperature, wind speed, horizontal and vertical turbulent diffusivity. In particular, analysis of the PPD(Predicted Percentage of Dissatisfied) represents the human thermal comfort. In this study, by adjusting the arrangement and proportion of the top floor building in the urban it was found that the inflow of the fresh air and cooling can be derived low PPD. Vertical heat flux amount of the city caused by climate change was a factor to form a high potential temperature in the city and the accumulation of cold air does not appear near the surface. Based on this, to make the city effectively respond to climate change may require a long-term restructuring of urban spatial structure and density management.

CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: II. 동아시아 단·장기 미래기후전망에 대한 열역학적 및 역학적 분석 (Future Change Using the CMIP5 MME and Best Models: II. The Thermodynamic and Dynamic Analysis on Near and Long-Term Future Climate Change over East Asia)

  • 김병희;문혜진;하경자
    • 대기
    • /
    • 제25권2호
    • /
    • pp.249-260
    • /
    • 2015
  • The changes in thermodynamic and dynamic aspects on near (2025~2049) and long-term (2075~2099) future climate changes between the historical run (1979~2005) and the Representative Concentration Pathway (RCP) 4.5 run with 20 coupled models which employed in the phase five of Coupled Model Inter-comparison Project (CMIP5) over East Asia (EA) and the Korean Peninsula are investigated as an extended study for Moon et al. (2014) study noted that the 20 models' multi-model ensemble (MME) and best five models' multi-model ensemble (B5MME) have a different increasing trend of precipitation during the boreal winter and summer, in spite of a similar increasing trend of surface air temperature, especially over the Korean Peninsula. Comparing the MME and B5MME, the dynamic factor (the convergence of mean moisture by anomalous wind) and the thermodynamic factor (the convergence of anomalous moisture by mean wind) in terms of moisture flux convergence are analyzed. As a result, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter and summer over EA. However, over the Korean Peninsula, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter, whereas the thermodynamic factor causes the higher increasing trend of precipitation in B5MME than the MME during the boreal summer. Therefore, it can be noted that the difference between MME and B5MME on the change in precipitation is affected by dynamic (thermodynamic) factor during the boreal winter (summer) over the Korean Peninsula.

농업재해 예측을 위한 신 기후변화 시나리오의 농업기상자료 구축 - 111개 농업주요지점을 대상으로 - (Construction of Agricultural Meteorological Data by the New Climate Change Scenario for Forecasting Agricultural Disaster - For 111 Agriculture Major Station -)

  • 주진환;정남수;서명철
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.87-99
    • /
    • 2013
  • For analysis of climate change effects on agriculture, precise agricultural meteorological data are needed to target period and site. In this study, agricultural meteorological data under new climate change scenario (RCP 8.5) are constructed from 2011 to 2099 in 111 agriculture major station suggested by Rural Development Administration (RDA). For verifying constructed data, comparison with field survey data in Suwon shows same trend in maximum temperature, minimum temperature, average temperature, and precipitation in 2011. Also comparison with normals of daily data in 2025, 2055, and 2085 shows reliability of constructed data. In analysis of constructed data, we can calculate sum of days over temperature and under temperature. Results effectively show the change of average temperature in each region and odd days of precipitation which means flood and dry days in target region.

기후 변화를 고려한 홍수 위험도 평가 (Flood Risk Assessment with Climate Change)

  • 정대일;제리 스테딘져;성장현;김영오
    • 대한토목학회논문집
    • /
    • 제28권1B호
    • /
    • pp.55-64
    • /
    • 2008
  • 기후변화에 대한 명백한 증거가 전 세계적으로 관찰되고 있음에도 불구하고 현재 사용 중인 홍수 빈도분석 방법은 이러한 기후변화나 장기변동성을 고려할 요소를 갖추지 못하고 있다. 본 연구에서는 관측된 연최대 일강우량과 일유출량 시계열을 대상으로 추세분석을 실시하여 전 지구적으로 나타난 기온상승과 같은 증가추세가 존재하는지 linear regression과 Mann-Kendall 기법을 이용하여 살펴보았으며, 나아가 기후의 변동성으로 인해 발생할 수 있는 홍수량의 증가추세를 반영한 빈도분석 방안을 제시하였다. 5개 대상지점(서울, 인천, 울릉도, 전주, 강릉)의 연최대 일강우량 모두 시간에 따른 증가추세를 일관되게 보이고 있었으나, 통계적인 유의성이 검증되지는 않았다. 홍수량도 3개의 대상지점(안동댐, 소양강댐, 대청댐) 모두에서 시간에 따른 증가추세가 관찰되었으나, 안동댐의 상향추세만이 통계적인 유의성을 내포하였다. 선형추세를 가진 홍수량의 빈도분석 및 위험도를 추정할 수 있는 대수정규 추세모형(log-normal trend model)을 소개하고, 안동댐과 소양강댐의 홍수 빈도분석을 위해 적용하였다. 적용결과 대수정규 추세모형의 2005년 50년 빈도 홍수량은 안동댐과 소양강댐 모두 대수정규 모형보다 각각 41%와 21% 증가하였으며, 목표연도가 증가함에 따라 추정되는 홍수량 역시 함께 증가함을 확인하였다.

자료기간에 따른 확률 강우량 변화 특성 분석 (An Analysis of the Characteristics in Design Rainfall According to the Data Periods)

  • 오태석;김민석;문영일;안재현
    • 한국방재학회 논문집
    • /
    • 제9권4호
    • /
    • pp.115-127
    • /
    • 2009
  • 최근 한반도에서는 이상기후 및 기후변화의 영향으로 인한 피해가 증가하고 있는 추세이다. 따라서 본 연구에서는 자료기간에 따른 확률강우량의 변화 특성에 대하여 분석하였다. 분석 대상 자료는 기상청에서 관할하고 있는 관측소 중에서 비교적 장기간의 자료를 보유하고 있는 14개 지점을 선정하였다. 선정된 지점에서 강우자료의 관측년수를 기준으로 5가지 경우로 구분하여 빈도해석을 실시하였다. 빈도해석 결과, 우리나라 대부분 지역에서 확률강우량이 뚜렷하게 증가하는 것을 확인할 수 있었다. 또한 관측된 강우량 자료와 확률강우량 자료를 이용한 변동성과 경향성 분석을 실시하였다. 통계적 분석 결과에서 강우자료는 변동성과 경향성이 거의 나타나지 않았으나, 확률강우량 자료에서는 변동성과 경향성이 다수 나타나는 것으로 분석되었다. 또한 대부분의 지점에서 변동성 및 경향성에 의해 확률강우량이 증가하는 것으로 나타났다. 이는 확률강우량의 변화에 대한 수공구조물 등의 설계 및 기존의 홍수 방어능력에 대한 검토 필요성을 의미한다.

Effect of the climate change on groundwater recharging in Bangga watershed, Central Sulawesi, Indonesia

  • Sutapa, I Wayan
    • Environmental Engineering Research
    • /
    • 제22권1호
    • /
    • pp.87-94
    • /
    • 2017
  • This study was conducted to determine the effect of the climate change to the level of groundwater recharging. This research was conducted on the watershed of Bangga by using the Soil Water Balance of MockWyn-UB model. Input data compose of evapotranspiration, monthly rainfall, watershed area, canopy interception, heavy rain factor and the influence of climate change factors (rainfall and temperature). The conclusion of this study indicates that there is a decreasing trend in annual groundwater recharge observed from 1995 to 2011. The amount of groundwater recharge varied linearly with monthly rainfall and between 3% to 25% of the rainfall. This result implies that rain contributed more than groundwater recharge to runoff and evaporation and the groundwater recharge and Bangga River discharge depends largely on the rainfall. In order to increase the groundwater recharge in the study area, reforestation programmes should be intensified.

Climate Change Assessment on Air Temperature over Han River and Imjin River Watersheds in Korea

  • Jang, S.;Hwang, M.
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.740-741
    • /
    • 2015
  • the downscaled air temperature data over study region for the projected 2001 - 2099 period were then ensemble averaged, and the ensemble averages of 6 realizations were compared against the corresponding historical downscaled data for the 1961 - 2000 period in order to assess the impact of climate change on air temperature over study region by graphical, spatial and statistical methods. In order to evaluate the seasonal trends under future climate change conditions, the simulated annual, annual DJF (December-January-February), and annual JJA (June-July-August) mean air temperature for 5 watersheds during historical and future periods were evaluated. From the results, it is clear that there is a rising trend in the projected air temperature and future air temperature would be warmer by about 3 degrees Celsius toward the end of 21st century if the ensemble projections of air temperature become true. Spatial comparison of 30-year average annual mean air temperature between historical period (1970 - 1999) and ensemble average of 6-realization shows that air temperature is warmer toward end of 21st century compared to historical period.

  • PDF

전기통신설비의 EMC 및 환경에 관한 ITU-T 표준 동향 (ITU-T Standardization for EMC and Environment of Telecommunication Network)

  • 오호석
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2009년도 정보통신설비 학술대회
    • /
    • pp.239-241
    • /
    • 2009
  • This paper gives the activities and trend analysis handled in the ITU-T study group 5 meeting. In the meeting, the title of SG(Study Group)5 was changed into 'Environment and climate change' since the role of the former Focus Group 'ICT and Climate Change' was moved to SG5. SG5 consists of 3 WP(Working Part) and have total 20 Questions. The Recommendations to be established or revised were discussed and new Recommendations, K.79 and K.80, were consented. The agenda for the human exposure to electromagnetic fields due to radio systems and mobile equipment was focused and discussed in detail. Also, related to ICT and climate change, new questions to be studied in this study period were discussed and defined.

  • PDF

벼에 대한 지역별 물 생산성 및 잠재 물 소비량 평가 (Assessment of Water Productivity & Potential Water Consumption of Rice by Each Province)

  • 허승오;최순군;엽소진;홍성창;최동호
    • 농촌계획
    • /
    • 제25권4호
    • /
    • pp.27-33
    • /
    • 2019
  • Agricultural water for crops are faced with the need to improve the use efficiency due to the impact of climate change. Water productivity (WP) is known as a good indicator for assessing resources efficiency. This study was conducted to assess WP of rice and potential water consumption (PWC) as new indicator for water use efficiency assessment. The average of WP was 0.7 kg/㎥, and Jeonbuk had the highest WP as 0.83 kg/㎥. Kangwon and Kyungbuk had the lowest WP as 0.59 kg/㎥. PWC showed the same trend because of rice consumption per capita, but Total PWC considering population living in each province showed the different trend with PWC. Every year, the changing patterns of WP was increasing little by little, and the patterns of PWC was decreasing greatly than WP. These results mean that WP has been slowly improved through breed development and irrigation techniques, and PWC was affected by reduced rice consumption and WP increasing. PWC could also be useful as an indicator to compare the water use efficiency between provinces or nations.