• Title/Summary/Keyword: Trenchless tunneling method

Search Result 3, Processing Time 0.019 seconds

Development of Trenchless Tunneling Method Using Pressurizing Support and Its Field Application (가압식 지보를 이용한 비개착 터널공법 개발 및 현장적용 사례)

  • Kim, Dae-Young;Lee, Hong-Sung;Sim, Bo-Kyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.17-30
    • /
    • 2012
  • A new trenchless tunneling method using pressurizing support has been developed. As it overcomes shortcomings of conventional methods, it is applied to the field. The main concept of the new method is the pressurization system which, by means of pressurization bag between outer flange of steel ribs and excavated perimeter, applies the pressure corresponding to the magnitude of the relaxed earth pressure caused by excavation to the ground to prevent ground displacement. The stability of the support members and effect of displacement control of the new method were verified through several ways such as numerical tests and various model tests. The new method was applied to the construction of a 10.7 m wide, 7.9 m high and 85 m long road tunnel that passes under Yeongdong Expressway. By applying the new method, the tunnel construction was successfully completed in 13.5 months. It decreases the construction period to 35% compared to that of conventional methods, and ground displacement was almost negligible.

Development of pressurizing support tunneling method and case study of its field application (가압지보 터널공법 개발 및 현장적용 사례 분석)

  • Kim, Dea-Young;Lee, Hong-Sung;Lee, Se-Jin;Lee, Hee-Kwang;Sim, Bo-Kyoung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.397-419
    • /
    • 2012
  • The pressurizing support tunneling method has been developed that overcomes shortcomings of conventional trenchless methods and applied to the field. The main concept of the new method is the pressurization system which, by means of pressurization bag between outer flange of steel ribs and excavated perimeter, applies higher pressure than the pressure relaxed by excavation to the ground to prevent ground displacement. The stability of the support members and effect of displacement control of the new method were verified through 3D numerical analyses. The new method was applied to the construction of a 10.7 m wide, 7.9 m high and 85 m long ramp tunnel that passes under ${\bigcirc}{\bigcirc}$ Expressway. By applying the new method, the tunnel construction was successfully completed in 13.5 months which decreases construction time to 35% compared to conventional methods, and ground displacement was almost negligible.

Inspecting Stablity of DSM method with Grouting on Tunnel Face using Chamber Test and Numericlal Analysis (토조실험과 수치해석을 이용한 막장면 그라우팅 DSM공법의 안정성 검토)

  • Kim, Young-Uk;Park, Young-Bok;Kim, Li-Sak;Kim, Nak-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.677-683
    • /
    • 2016
  • In urban areas, underground tunnel construction sites have spread widely to accommodate rapidly increasing traffic volume along with a high-degree economic growth. Earth tunneling might be adapted frequently for the underground space securing, and various tunneling methods have been developed to stabilize the tunnel face and crown. Among them, the DSM (divided shield method) is gaining popularity for its enhanced stability and construction efficiency. This method has its foundation from the Messer Shield method, which is one of the trenchless special tunneling methods. This study examined the effects of face reinforcement on construction the sequence through a large scale soil chamber test and numerical analyses. The chamber has a size of a 1/2 scale of the real tunnel. Surface settlements were measured according the tunneling process. Commercially available software, MIDAS GTS, was used for numerical analysis and its result was compared with the values obtained from the chamber test. The results of the study show that both settlements of the embanked soils and the stress of the tunnel girder are located within the safe criteria. Overall, this study provides basic data and the potential of using a reinforced tunnel face to enhance DSM applications.