• 제목/요약/키워드: Trenching

Search Result 36, Processing Time 0.018 seconds

Experimental Studies on the Compressive Strength of the Frozen Soils (동결토의 압축강도에 관한 실험적 연구)

  • 유능환;최중돈;유영선;조영택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.55-66
    • /
    • 1993
  • Upon freezing a soil swells due to phase change and its compression stress increase a lot. As the soil undergo thawing, however, it becomes a soft soil layer because the 'soil changes from a solid state to a plastic state. These changes are largely dependent on freezing temperature and repeated freezing-thawing cycle as well as the density of the soil and applied loading condition. This study was initiated to describe the effect of the freezing temperature and repeated freezing-thawing cycle on the unconfined compressive strength. Soil samples were collected at about 20 sites where soil structures were installed in Kangwon provincial area and necessary laboratory tests were conducted. The results could be used to help manage effectively the field structures and can be used as a basic data for designing and constructing new projects in the future. The results were as follows ; 1. Unconfined compressive strength decreased as the number of freezing and thawing cycle went up. But the strength increased as compression speed, water content and temperature decreased. The largest effect on the strength was observed at the first freezing and thawing cycle. 2. Compression strain went up with the increase of deformation speed, and was largely influenced by the number of the freezing-thawing cycle. 3. Secant modulus was responded sensitivefy to the material of the loading plates, increased with decrease of temperature down to - -10$^{\circ}$C, but was nearly constant below the temperature. Thixotropic ratio characteristic became large as compression strain got smaller and was significantly larger in the controlled soil than in the soil treated with freezing and thawing processes 4. Vertical compression strength of ice crystal(development direction) was 3 to 4 times larger than that of perpendicular to the crystal. The vertical compression strength was agreed well with Clausius-Clapeyrons equation when temperature were between 0 to 5C$^{\circ}$, but the strength below - 5$^{\circ}$C were different from the equation and showed a strong dependency on temperature and deformation speed. When the skew was less then 20 degrees, the vertical compression strength was gradually decreased but when the skew was higher than that, the strength became nearly constant. Almost all samples showed ductile failure. As considered above, strength reduction of the soil due to cyclic freezing-thawing prosses must be considered when trenching and cutting the soil to construct soil structures if the soil is likely subject to the processes. Especially, if a soil no freezing-thawing history, cares for the strength reduction must be given before any design or construction works begin. It is suggested that special design and construction techniques for the strength reduction be developed.

  • PDF

Dipole-Dipole Array Geoelectric Survey for Gracture Zone Detection (전기비저항 탐사법을 이용한 지하 천부 파쇄대 조사)

  • Kim, Geon Yeong;Lee, Jeong Mo;Jang, Tae U
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.217-224
    • /
    • 1999
  • Although faults can be found by geological surveys, the surface traces of faults are not easily discovered by traditional geological surveys due to alluvia. In and around faults and fracture zones, the electrical resistivity appears to be lower than that of the surroundings due to the content of groundwater and clay minerals. Therefore, electrical resistivity surveys are effective to search buried faults and fracture zones. The dipole-dipole array electrical resistivity surveys, which could show the two dimensional subsurface electrical resistivity structure, were carried out in two areas, Yongdang-ri, Woongsang-eup, Yangsan-si, Kyungsangnam-do and Malbang-ri, Woedong-eup, Kyungju-si, Kyungsangpook-do. The one was next to the Dongrae Fault and the other near the Ulsan Fault was close to the region in which debatable quaternary fault traces had been found recently. From each measured data set, the electrical resistivity cross-section was obtained using the inversion program the reliability of which was analyzed using analytic solutions. A low resistivity zone was found in the inverted cross-section from the Yongdang-ri area survey data, and two low resistivity zones were found in that from the Malbang-ri area survey data. They were almost vertical and were 15∼20 m wide. Accounting the shape and the very low resistivity values of those zones (<100 Ωm)in the inverted section, they were interpreted as fracture zones although they should be proven by trenching. The reliability of the interpretation might be improved by adding some more parallel resistivity survey lines and interpreting the results in 3 and/or adding other geophysical survey.

  • PDF

Gravity Field Interpretation and Underground Structure Modelling as a Method of Setting Horizontal and Vertical Zoning of a Active Fault Core (활성단층의 3차원적인 규모를 결정하기 위한 중력장 데이터의 해석 및 지각구조 모델링: 양산단층에서의 예)

  • Choi, Sungchan;Kim, Sung-Wook;Choi, Eun-Kyeong;Lee, Young-Cheol;Ha, Sangmin
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • In order to estimate the vertical and horizontal structural in the Yangsan fault core line (Naengsuri area, Pohang), we carried out gravity field measurements and interpretation procedures such as Euler deconvolution method and curvature analysis in addition to the forward modelling technique (i.e. IGMAS+). We found a prominent gravity difference of more than 1.5 mGal across the fault core. This indicates a distinct density difference between the western and eastern crustal area across the Yangsan fault line. Comparing this gravity field interpretation with other existent geologic and geophysical survey data (e.g. LiDAR, trenching, electric resistivity measurements), It is concluded that (1) the prominent gravity difference is caused by the density difference of about 0.1 g/㎤ between the Bulguksa Granite in the west and the Cretaceous Sandstone in the east side, (2) the fault core is elongated vertically into a depth of about 2,000 meters and extended horizontally 3,000 meters to the NNE direction from Naengsuri area. Our results present that the gravity field method is a very effective tool to estimate a three -dimensional image of the active fault core.

Ammonium Nitrate Explosion Technique for the Establishment of Orchard (산지과수(山地果樹)의 재식(栽植)을 위(爲)한 폭약이용(爆藥利用)에 관(關)한 연구(硏究))

  • Yoo, S.H.;Koh, K.C.;Park, M.E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.4
    • /
    • pp.169-178
    • /
    • 1980
  • Ammonium nitrate explosion technique was applied to seek a convenient method for the establishment of orchard on the undulating to rolling land or hill side of Pogog clay loam soil (Fine Aquic Fragiudalfs : Planosols) having high bulk density and low permeability. Explosions were made by three ammonium nitrate explosives placed in the bottom of 90cm deep auger hole with every 2m interval (Explosion I) and 4m interval (Explosion II) respectively. The effect of the explosion on physical properties of the soil was investigated and compared with the effect induced by manual digging, excavation of $1m{\times}1m$ in diameter and depth (Manual digging I) and trenching of $1m{\times}1m{\times}25m$ in width, depth, and length (Manual digging II) respectively. The results investigated after 7 months from the treatments are summarized as follows : 1. The explosion or manual digging reduced bulk density and hardness, whereas the treatments increased porosity, hydraulic conductivity, and available moisture-holding capacity of the soil. 2. The explosion of 4 m interval improved physical properties of the soil to optimum level up to 70cm of the distance from the explosion core in the range of depth 0-60cm, while in the case of depth from 60 to 100cm the optimum level was achieved only within 50cm radius. 3. When exploded in 2 m interval, the effect in the 0-60cm depth was overlapped between two explosion cores. The effect in the depth between 60 and 100cm, however, was found to be independent of the explosion intervals. 4. The manual digging was only costly and laborious but effective only within the work-up zone. 5. For the soils having bulk density higher than $1.4g/cm^3$ after the treatments, the field capacity determined 72 hours after a heavy rain was lower than the laboratory estimate at the suction of 1/3 atm. 6. The top growth of apple tree for the first year revealed that the explosion seemed better treatment than the manual digging, even though the difference was insignificant.

  • PDF

Effect of Fertilizer and Organic Matter Level on Marketable Tuber Production in Chinese Yam (Dioscorea opposita) (마(산약) 생산을 위한 시비법 개선연구)

  • Shin, Jong-Hee;Kim, Sang-Kuk;Kang, Dong-Kyoon;Park, Sang-Zo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.144-150
    • /
    • 2014
  • Yams (Dioscorea spp), which are edible or medicinal tuber crops, are a important crop in South Korea. Yams require a high level of soil fertility. The various cultural practices such as fertilizing and plowing were tested for marketable tuber production in Chinese yam (Dioscorea opposita). Tuber yield was also affected by organic matters in soil. Application higher level of organic matters result in increased each tuber weight and tuber yield per unit area. The nutrient absorption quantity of the plant such as nitrogen, phosphoric acid, calcium and potassium was increased from 100~120 days after planting, which time to begin tuber enlargement. The tuber yield was increased when the fertilization increased in quantity. Total yield and marketable ratio were the highest in 31~32 kg/10a of nitrogen fertilizer. From above result, income become larger with increase of marketable yield and quality improvement at 63% (27 kg/10a) level of conventional N fertilization (43 kg/10a). The tuber yield was not significantly different between with in various application level of potash fertilizer. Tuber size and weight decreased accordingly to decreased fertilizing level, so the rates of small tubers increased greatly at cultivation without chemical fertilizer. In considering the accumulation rates of allantoin in Chinese yam tubers, the apt harvest season was after October. The allantoin quantity of it was not influenced with nitrogen fertilizing. Moreover it was advantageous with decrease of chemical fertilizer and appropriate fertilizing in soil environment protection. Commercial tuber's number and yield were increased in trenching before planting with trencher compared with rotavating with tractor.

The Process of Hillslope Denudation Since the Last Glacial Maximum Near Tangjeong-myeon, Asan-si, Central Korea (아산시(牙山市) 탕정면(湯井面) 일대(一帶) 최종빙기(最終氷期) 최성기(最盛期) 이후(以後) 구사면(丘斜面)의 삭박과정(削剝過程))

  • PARK, Ji-Hoon;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.67-83
    • /
    • 2008
  • To find out the process of hillslope denudation since the Last Glacial Maximum in Asan area, we conducted the stratiform interpretation and carbon age measurements with the collected samples through trenching in the valley bottom of 'Agol' located in the lower stream of Magok stream. The results are as follows. 11 inorganic and 8 organic matter layers were confirmed at the point of trench MG1 in the subject area, 7 inorganic and 3 organic at the point of trench MG2, and 5 inorganic and 3 organic at the point of trench MG3, respectively. The frequency of hillslope denudation, hillslope mass movement, which had occurred in the unstable environment of back hillslope at the point of MG 1, was 11 times (8 times before about 2,900yrBP, twice in between about 2,900~1,900yrBP, and once after about 1,900yrBP) as a whole. The frequency of moor which had formed in the comparatively stable environment of back hillslope was 9 times (5 times before about 3,000yrBP, twice in between 3,000~2,800yrBP, and once in between 2,200~1,900yrBP) at minimum. The frequency of back hillslope denudation at the point of MG2 was totally 7 times (4 times before about 1,900yrBP and 3 times after about 1,900yrBP) and the moor formations were 3 times (twice before about 1,900yrBP and once after 1,900yrBP). The frequency of back hillslope denudation at the point of MG3 was totally 5 times (3 times before about 1,900yrBP and twice after about 1,900yrBP) and the moor formations were 3 times (twice before about 1,900yrBP and once after 1,900yrBP). The hillslope surrounded by valley bottom of 'Agol' was confirmed as the pile up of various inorganic matters by the mass movement such as sand or sandy gravel in the valley bottom of the subject area, formed not once but several times of denudation. We could know that the hillslope denudation cycle converged to the time period of $10^2{\sim}10^3$ years. These results will be an important basic data for restoring hillslope denudation process near Asan and changing climate of the Late Quaternary Period.