This paepr presents an algorithm for searching an object in a fast way which contains a continuous moving object in multi-dimensional spatical databases. This algorithm improves the search method of R-tree for the case that a target object is continuously moving in a spatial database. It starts the searching from the current node instead of the root of R-tree. Thus, the algorithm will find the target object from the entries of current node or sibling nodes in the most cases. The performance analysis shows that it is more efficient than the existing algorithm for R-tree when search windows or target objects are continuously moving.
Sphere decoding (SD) for multiple-input and multiple-output systems is a well-recognized approach for achieving near-maximum likelihood performance with reduced complexity. SD is a tree search process, whereby a large number of nodes can be searched in an effort to find an estimation of a transmitted symbol vector. In this paper, a simple and generalized approach called layer pruning is proposed to achieve complexity reduction in SD. Pruning a layer from a search process reduces the total number of nodes in a sphere search. The symbols corresponding to the pruned layer are obtained by adopting a QRM-MLD receiver. Simulation results show that the proposed method reduces the number of nodes to be searched for decoding the transmitted symbols by maintaining negligible performance loss. The proposed technique reduces the complexity by 35% to 42% in the low and medium signal-to-noise ratio regime. To demonstrate the potential of our method, we compare the results with another well-known method - namely, probabilistic tree pruning SD.
The Monte Carlo tree search (MCTS) is a popular method for implementing an intelligent game program. It has several hyper-parameters that require an optimization for showing the best performance. Due to the stochastic nature of the MCTS, the hyper-parameter optimization is difficult to solve. This paper uses the self-playing capability of the MCTS-based game program for optimizing the hyper-parameters. It seeks a winner path over the hyper-parameter space while performing the self-play. The top-q longest winners in the winner path compete for the final winner. The experiment using the 15-15-5 game (Omok in Korean name) showed a promising result.
이 논문에서는 정보영재 교육 중에서 프로그래밍을 위한 사고력 신장에 적합한 교육 프로그램 모형을 개발하고, Tic-tac-toe 문제를 실제적인 예로 보여 제안된 교육 프로그램의 타당성과 유효성을 검증하였다. 이 논문에서 제안된 모델에서는 자료구조로는 게임 트리를 사용하며 제어구조로는 게임 트리의 탐색에 기반한 사고력 신장 교육 프로그램으로 4단계로 구성되는 모형을 제안한다. 이 모델을 통하여 학생들은 문제를 게임 트리로 표현하는 방법을 학습하게 되며, 게임 트리의 탐색 방법을 통하여 트리로 구성된 문제를 해결하는 방법을 배우게 된다. 이 교육 프로그램에서 목표로 하는 사고력 신장을 위한 정보영재의 내적 능력에는 유창성, 직관력, 독창성, 집중력, 상상력, 분석력, 도형력, 공간력, 종합력, 문제해결력 등이 포함된다.
최근 도로 네트워크 환경에서 범위 검색에 관한 연구가 활발히 진행되고 있다. 그러나 기존의 대표적인 범위 검색 기법들은 POI(Point of Interest)의 개수가 많을수록 저장 공간이 증가하거나 비효율적인 검색 과정으로 인해 검색 시간이 오래 걸리는 단점이 있다. 따라서 본 논문에서는 이러한 기존 범위 검색 기법들의 문제점을 해결하기 위해 QRMP(QR-tree using Middle Point)를 이용하는 범위 검색 기법을 제시하였다. 그리고 QRMP의 전체 저장 공간 크기를 구하는 수식을 산출하고, 또한 실제 도로 네트워크와 POI 데이터를 이용한 실험을 통해 본 논문에서 제안하는 범위 검색 기법의 우수성을 입증하였다.
온톨로지의 활용이 늘어나면서 의미적 유사성 검색에 대한 관심이 높아지고 있다. 본 논문에서는 질의 객체와의 의미적 유사성이 높은 객체를 검색하는 최근접 질의 기법을 제안하였다. 의미적 유사성을 측정하는 유사성 함수로는 최적 대응값 방식의 유사도 함수를 사용하였으며 주석 정보에 대한 색인을 위해 시그니처 트리를 사용하였다. 시그니처 트리는 집합 유사성 검색에서 많이 사용되는 색인 구조로서 유사성 검색에 사용하기 위해서는 검색시 각 노드를 탐색하였을 때 발견할 수 있는 유사도의 최대값을 예측할 수 있어야 한다. 이에 본 논문에서는 최적 대응값 방식의 유사도 함수에 대한 예측 최대값 함수를 제안하고 올바른 예측 함수임을 증명하였다. 또한 시그니처 트리에 동일한 시그니처가 중복되어 저장되지 않도록 구조를 개선하였다. 이는 시그니처 트리의 크기를 감소시킬 뿐만 아니라 질의 성능 또한 향상시켜 주었다. 실험의 데이타로는 대용량 온톨로지와 주석 정보 데이타를 제공하는 Gene Ontology(GO)를 사용하였다. 실험에서는 제안한 방법의 성능 향상 외에도 페이지 크기와 노드 분할 방법이 의미적 유사성 질의 성능에 미치는 영향에 대해 알아보았다.
최신 컴퓨터 시스템의 새로운 병목 현상이 메모리 접근에서 발생하고 있다. 메모리의 접근 속도를 줄이기 위해 캐시 메모리가 도입되었지만, 캐시 메모리는 원하는 데이타가 캐시에 옮겨져 있어야 메모리 접근 속도를 줄일 수 있다. 이를 해결하기 위해 기존의 T 트리를 개선한 CST 트리가 제안되었다. 하지만, CST 트리는 범위 검색 시, 불필요한 노드를 검색해야 한다는 단점이 있다. 본 논문은 캐시 효율적인 CST 트리의 장점을 가지며, 범위 검색이 가능하도록 하기 위해 연결 리스트로 각 노드를 연결한 $CST^+$ 트리를 제안하였으며, CST 및 $CSB^+$에 비해 $4{\sim}10$배의 성능 향상을 보였다. 또한, 메인 메모리 데이타베이스 시스템 장애 시, 빠른 데이타베이스 복구를 위해 인덱스의 빠른 재 구축은 전체 데이타 복구 성능에 있어 매우 중요한 부분이다. 이를 위해 본 논문은 병렬 삽입 기법을 제안하였다. 병렬 삽입은 노드 분할 오버헤드가 없으며, 데이타 복구 단계와 인덱스 구축 단계를 병렬로 수행할 수 있는 장점이 있다. 병렬 삽입은 순차 삽입 및 일괄 삽입에 비해 $2{\sim}11$배의 성능 향상을 보였다.
라우터에서의 어드레스 검색은 일초에 수천만개 이상으로 입력되는 패킷에 대하여 실시간으로 처리되어야하기 때문에 인터넷 라우터는 효율적인 IP 어드레스 검색 구조를 갖도록 설계되어야 한다. 본 논문에서는 [1]에서 제안된 IP prefix의 binary tree에 기초한 효율적이면서 실용적인 IP 어드레스 검색 구조와 이를 구현하는 하드웨어 구조를 제안한다. 제안된 구조는 (1)에서 제안된 binary tree의 문제점들을 해결하는 구조로서 작은 수의 엔트리를 갖는 TCAM과 pipelined binary search를 적용하여 효율적인 하드웨어로 구현되었다. 구현된 하드웨어 구조의 성능을 평가하여 본 결과., 약 30,000 여개의 entry를 갖는 MAE-WEST 라우터 데이타의 경우, 2,000여개의 엔트리를 갖는 TCAM과 총 245 Kbyte의 SRAM을 사용하여 한번의 메모리 access를 통하여 어드레스 검색이 가능한 것으로 평가되었다. 또한 제한된 방식은 큰 데이터베이스나 IPv6를 위해서도 확장이 용이하다.
고차원 데이터에 대한 다양한 색인 구조가 제안되어 왔음에도 불구하고, 인터넷 서비스로서 이미지 및 동영상의 내용 기반 검색을 지원하기 위해서는 고확장성 지원 및 k-최근접점 검색 성능 향상을 지원하는 새로운 고차원 데이터의 색인 구조가 절실히 요구된다. 이에 우리는 다중 컴퓨팅 노드를 바탕으로 구축되는 분산 색인 구조로 분산 벡터 근사 트리(Distributed Vector Approximation-tree)를 제안한다. 분산 벡터 근사 트리는 대용량의 고차원 데이터로부터 추출한 샘플 데이터를 바탕으로 hybrid spill-tree를 구축하고, hybrid spill-tree외 말단 노드 각각에 분산 컴퓨팅 노드를 매핑하여 VA-file용 구축하는 두 레벨의 분산 색인 구조이다. 우리는 다중 컴퓨팅 노드들 상에 구축된 분산 벡터 근사 트리를 바탕으로 병렬 k-최근접점 검색을 수행함으로써 검씩 성능을 향상시킨다. 본 논문에서는 서로 다른 분포의 데이터 집합을 바탕으로 한 성능 시험 결과를 통하여, 분산 벡터 근사 트리가 기존의 고확장성을 지원하는 색인 구조와 비교하여 검색 정확도에 대한 손실 없이 더 빠른 k-최근접점 검색을 수행함을 보인다.
Process mining is an analytical technique aimed at obtaining useful information about a process by extracting a process model from events log. However, most existing process models are deterministic because they do not include stochastic elements such as the occurrence probabilities or execution times of activities. Therefore, available information is limited, resulting in the limitations on analyzing and understanding the process. Furthermore, it is also important to develop an efficient methodology to discover the process model. Although genetic process mining algorithm is one of the methods that can handle data with noises, it has a limitation of large computation time when it is applied to data with large capacity. To resolve these issues, in this paper, we define a stochastic process tree and propose a tabu search-genetic process mining (TS-GPM) algorithm for a stochastic process tree. Specifically, we define a two-dimensional array as a chromosome to represent a stochastic process tree, fitness function, a procedure for generating stochastic process tree and a model trace as a string of activities generated from the process tree. Furthermore, by storing and comparing model traces with low fitness values in the tabu list, we can prevent duplicated searches for process trees with low fitness value being performed. In order to verify the performance of the proposed algorithm, we performed a numerical experiment by using two kinds of event log data used in the previous research. The results showed that the suggested TS-GPM algorithm outperformed the GPM algorithm in terms of fitness and computation time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.