• 제목/요약/키워드: Tree-based pipeline optimization (TPOT)

검색결과 2건 처리시간 0.018초

자동기계학습 TPOT 기반 저수위 예측 정확도 향상을 위한 시계열 교차검증 기법 연구 (A Study on Time Series Cross-Validation Techniques for Enhancing the Accuracy of Reservoir Water Level Prediction Using Automated Machine Learning TPOT)

  • 배주현;박운지;이서로;박태선;박상빈;김종건;임경재
    • 한국농공학회논문집
    • /
    • 제66권1호
    • /
    • pp.1-13
    • /
    • 2024
  • This study assessed the efficacy of improving the accuracy of reservoir water level prediction models by employing automated machine learning models and efficient cross-validation methods for time-series data. Considering the inherent complexity and non-linearity of time-series data related to reservoir water levels, we proposed an optimized approach for model selection and training. The performance of twelve models was evaluated for the Obong Reservoir in Gangneung, Gangwon Province, using the TPOT (Tree-based Pipeline Optimization Tool) and four cross-validation methods, which led to the determination of the optimal pipeline model. The pipeline model consisting of Extra Tree, Stacking Ridge Regression, and Simple Ridge Regression showed outstanding predictive performance for both training and test data, with an R2 (Coefficient of determination) and NSE (Nash-Sutcliffe Efficiency) exceeding 0.93. On the other hand, for predictions of water levels 12 hours later, the pipeline model selected through time-series split cross-validation accurately captured the change pattern of time-series water level data during the test period, with an NSE exceeding 0.99. The methodology proposed in this study is expected to greatly contribute to the efficient generation of reservoir water level predictions in regions with high rainfall variability.

기계학습 기반 모델을 활용한 시화호의 수질평가지수 등급 예측 (WQI Class Prediction of Sihwa Lake Using Machine Learning-Based Models)

  • 김수빈;이재성;김경태
    • 한국해양학회지:바다
    • /
    • 제27권2호
    • /
    • pp.71-86
    • /
    • 2022
  • 해양환경을 정량적으로 평가하기 위해 수질평가지수(water quality index, WQI)가 사용되고 있다. 우리나라는 해양수산부고시 해양환경기준에 따라 WQI를 5개 등급으로 구분하여 수질을 평가한다. 하지만, 방대한 수질 조사 자료에 대한 WQI 계산은 복잡하고 많은 시간이 요구된다. 이 연구는 기존의 조사된 수질 자료를 활용하여 WQI 등급을 예측할 수 있는 기계학습(machine learning, ML) 기반의 모델을 제안하고자 한다. 특별관리해역인 시화호를 모델링 지역으로 선정하였다. AdaBoost와 TPOT 알고리즘을 모델 훈련을 위해 사용하였으며, 분류 모델 평가 지표(정확도, 정밀도, F1, Log loss)로 모델 성능을 평가하였다. 훈련하기 전, 각 알고리즘 모델의 최적 입력자료 조합을 탐색하기 위해 변수 중요도와 민감도 분석을 수행하였다. 그 결과 저층 용존산소(dissolved oxygen, DO)는 모델의 성능에서 가장 중요한 인자였다. 반면, 표층 용존무기질소(dissolved inorganic nitrogen, DIN)와 표층 용존무기인(dissolved inorganic phosphorus, DIP)은 상대적으로 영향이 적었다. 한편, 최적 모델의 시공간적 민감도와 WQI 등급 별 민감도를 비교한 결과 각 조사 정점 및 시기, 등급 별 모델의 예측 성능이 상이하였다. 결론적으로 TPOT 알고리즘이 모든 입력자료 조합에서 성능이 더 우수하여 충분한 자료로 훈련된 최적 모델은 새로운 수질 조사 자료의 WQI 등급을 정확하게 분류할 수 있을 거라 판단된다.