• Title/Summary/Keyword: Tree-Based Network

Search Result 633, Processing Time 0.023 seconds

(A Centroid-based Backbone Core Tree Generation Algorithm for IP Multicasting) (IP 멀티캐스팅을 위한 센트로이드 기반의 백본코아트리 생성 알고리즘)

  • 서현곤;김기형
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.424-436
    • /
    • 2003
  • In this paper, we propose the Centroid-based Backbone Core Tree(CBCT) generation algorithm for the shared tree-based IP multicasting. The proposed algorithm is based on the Core Based Tree(CBT) protocol. Despite the advantages over the source-based trees in terms of scalability, the CBT protocol still has the following limitations; first, the optimal core router selection is very difficult, and second, the multicast traffic is concentrated near a core router. The Backbone Core Tree(BCT) protocol, as an extension of the CBT protocol has been proposed to overcome these limitations of the CBT Instead of selecting a specific core router for each multicast group, the BCT protocol forms a backbone network of candidate core routers which cooperate with one another to make multicast trees. However, the BCT protocol has not mentioned the way of selecting candidate core routers and how to connect them. The proposed CBCT generation algorithm employs the concepts of the minimum spanning tree and the centroid. For the performance evaluation of the proposed algorithm, we showed the performance comparison results for both of the CBT and CBCT protocols.

Region-based Tree Multicasting Protocol in Wireless Ad-Hoc Networks (무선 에드혹 네트워크에서 지역 기반 트리를 이용한 멀티캐스팅 프로토콜)

  • Lim Jung-Eun;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11B
    • /
    • pp.772-783
    • /
    • 2005
  • In this paper, we propose an effective multicasting protocol in wireless ad-hoc networks. Conventional wired and wireless network multicast protocols do not perform well in wireless ad hoc networks because they were designed without consideration of ad hoc environments such as node mobility, limited bandwidth, high error probability. To solve this problem, some multicasting protocols for ad hoc network have been proposed in the literature. However, these protocols can not provide high packet delivery ratio, low control packet overhead and low expended bandwidth at the same time. Therefore, in this paper, we propose RTMA that improves multicasting performance in wireless ad hoc networks. RTMA calculates its current region from its position information by using GPS in order to make tree among the multicast group nodes in the same region. The proposed region-based tree method is for high packet delivery ratio, low control packet overhead when many senders send data packets. RTMA makes a reliable tree by using speed information to fill a gap of the weak points of the tree structure. When searching the routing path, RTMA selects the reliable path excluding high speed nodes.

TsCNNs-Based Inappropriate Image and Video Detection System for a Social Network

  • Kim, Youngsoo;Kim, Taehong;Yoo, Seong-eun
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.677-687
    • /
    • 2022
  • We propose a detection algorithm based on tree-structured convolutional neural networks (TsCNNs) that finds pornography, propaganda, or other inappropriate content on a social media network. The algorithm sequentially applies the typical convolutional neural network (CNN) algorithm in a tree-like structure to minimize classification errors in similar classes, and thus improves accuracy. We implemented the detection system and conducted experiments on a data set comprised of 6 ordinary classes and 11 inappropriate classes collected from the Korean military social network. Each model of the proposed algorithm was trained, and the performance was then evaluated according to the images and videos identified. Experimental results with 20,005 new images showed that the overall accuracy in image identification achieved a high-performance level of 99.51%, and the effectiveness of the algorithm reduced identification errors by the typical CNN algorithm by 64.87 %. By reducing false alarms in video identification from the domain, the TsCNNs achieved optimal performance of 98.11% when using 10 minutes frame-sampling intervals. This indicates that classification through proper sampling contributes to the reduction of computational burden and false alarms.

Use of Tree Traversal Algorithms for Chain Formation in the PEGASIS Data Gathering Protocol for Wireless Sensor Networks

  • Meghanathan, Natarajan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.612-627
    • /
    • 2009
  • The high-level contribution of this paper is to illustrate the effectiveness of using graph theory tree traversal algorithms (pre-order, in-order and post-order traversals) to generate the chain of sensor nodes in the classical Power Efficient-Gathering in Sensor Information Systems (PEGASIS) data aggregation protocol for wireless sensor networks. We first construct an undirected minimum-weight spanning tree (ud-MST) on a complete sensor network graph, wherein the weight of each edge is the Euclidean distance between the constituent nodes of the edge. A Breadth-First-Search of the ud-MST, starting with the node located closest to the center of the network, is now conducted to iteratively construct a rooted directed minimum-weight spanning tree (rd-MST). The three tree traversal algorithms are then executed on the rd-MST and the node sequence resulting from each of the traversals is used as the chain of nodes for the PEGASIS protocol. Simulation studies on PEGASIS conducted for both TDMA and CDMA systems illustrate that using the chain of nodes generated from the tree traversal algorithms, the node lifetime can improve as large as by 19%-30% and at the same time, the energy loss per node can be 19%-35% lower than that obtained with the currently used distance-based greedy heuristic.

A Novel Redundant Data Storage Algorithm Based on Minimum Spanning Tree and Quasi-randomized Matrix

  • Wang, Jun;Yi, Qiong;Chen, Yunfei;Wang, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.227-247
    • /
    • 2018
  • For intermittently connected wireless sensor networks deployed in hash environments, sensor nodes may fail due to internal or external reasons at any time. In the process of data collection and recovery, we need to speed up as much as possible so that all the sensory data can be restored by accessing as few survivors as possible. In this paper a novel redundant data storage algorithm based on minimum spanning tree and quasi-randomized matrix-QRNCDS is proposed. QRNCDS disseminates k source data packets to n sensor nodes in the network (n>k) according to the minimum spanning tree traversal mechanism. Every node stores only one encoded data packet in its storage which is the XOR result of the received source data packets in accordance with the quasi-randomized matrix theory. The algorithm adopts the minimum spanning tree traversal rule to reduce the complexity of the traversal message of the source packets. In order to solve the problem that some source packets cannot be restored if the random matrix is not full column rank, the semi-randomized network coding method is used in QRNCDS. Each source node only needs to store its own source data packet, and the storage nodes choose to receive or not. In the decoding phase, Gaussian Elimination and Belief Propagation are combined to improve the probability and efficiency of data decoding. As a result, part of the source data can be recovered in the case of semi-random matrix without full column rank. The simulation results show that QRNCDS has lower energy consumption, higher data collection efficiency, higher decoding efficiency, smaller data storage redundancy and larger network fault tolerance.

Spammer Detection using Features based on User Relationships in Twitter (관계 기반 특징을 이용한 트위터 스패머 탐지)

  • Lee, Chansik;Kim, Juntae
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.785-791
    • /
    • 2014
  • Twitter is one of the most famous SNS(Social Network Service) in the world. Twitter spammer accounts that are created easily by E-mail authentication deliver harmful content to twitter users. This paper presents a spammer detection method that utilizes features based on the relationship between users in twitter. Relationship-based features include friends relationship that represents user preferences and type relationship that represents similarity between users. We compared the performance of the proposed method and conventional spammer detection method on a dataset with 3% to 30% spammer ratio, and the experimental results show that proposed method outperformed conventional method in Naive Bayesian Classification and Decision Tree Learning.

A Framework for Wide-area Monitoring of Tree-related High Impedance Faults in Medium-voltage Networks

  • Bahador, Nooshin;Matinfar, Hamid Reza;Namdari, Farhad
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Wide-area monitoring of tree-related high impedance fault (THIF) efficiently contributes to increase reliability of large-scaled network, since the failure to early location of them may results in critical lines tripping and consequently large blackouts. In the first place, this wide-area monitoring of THIF requires managing the placement of sensors across large power grid network according to THIF detection objective. For this purpose, current paper presents a framework in which sensors are distributed according to a predetermined risk map. The proposed risk map determines the possibility of THIF occurrence on every branch in a power network, based on electrical conductivity of trees and their positions to power lines which extracted from spectral data. The obtained possibility value can be considered as a weight coefficient assigned to each branch in sensor placement problem. The next step after sensors deployment is to on-line monitor based on moving data window. In this on-line process, the received data window is evaluated for obtaining a correlation between low frequency and high frequency components of signal. If obtained correlation follows a specified pattern, received signal is considered as a THIF. Thereafter, if several faulted section candidates are found by deployed sensors, the most likely location is chosen from the list of candidates based on predetermined THIF risk map.

Inter-Process Correlation Model based Hybrid Framework for Fault Diagnosis in Wireless Sensor Networks

  • Zafar, Amna;Akbar, Ali Hammad;Akram, Beenish Ayesha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.536-564
    • /
    • 2019
  • Soft faults are inherent in wireless sensor networks (WSNs) due to external and internal errors. The failure of processes in a protocol stack are caused by errors on various layers. In this work, impact of errors and channel misbehavior on process execution is investigated to provide an error classification mechanism. Considering implementation of WSN protocol stack, inter-process correlations of stacked and peer layer processes are modeled. The proposed model is realized through local and global decision trees for fault diagnosis. A hybrid framework is proposed to implement local decision tree on sensor nodes and global decision tree on diagnostic cluster head. Local decision tree is employed to diagnose critical failures due to errors in stacked processes at node level. Global decision tree, diagnoses critical failures due to errors in peer layer processes at network level. The proposed model has been analyzed using fault tree analysis. The framework implementation has been done in Castalia. Simulation results validate the inter-process correlation model-based fault diagnosis. The hybrid framework distributes processing load on sensor nodes and diagnostic cluster head in a decentralized way, reducing communication overhead.

Confidential Convergecast Based on Random Linear Network Coding for the Multi-hop Wireless Sensor Network

  • Davaabayar Ganchimeg;Sanghyun Ahn;Minyeong Gong
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.252-262
    • /
    • 2024
  • The multi-hop wireless sensor network (WSN) suffers from energy limitation and eavesdropping attacks. We propose a simple and energy-efficient convergecast mechanism using inter-flow random linear network coding that can provide confidentiality to the multi-hop WSN. Our scheme consists of two steps, constructing a logical tree of sensor nodes rooted at the sink node, with using the Bloom filter, and transmitting sensory data encoded by sensor nodes along the logical tree upward to the sink where the encoded data are decoded according to our proposed multi-hop network coding (MHNC) mechanism. We conducted simulations using OMNET++ CASTALIA-3.3 framework and validated that MHNC outperforms the conventional mechanism in terms of packet delivery ratio, data delivery time and energy efficiency.

The typd of service and virtual destination node based multicast routing algorithm in ATM network (ATM 통신망에서의 서비스 유형과 경로 충첩 효과를 반영한 멀티캐스트 라우팅 알고리즘)

  • 양선희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2886-2896
    • /
    • 1996
  • The Type of Service based multicast routing algorithm is necessary to support efficiently herogeneous applications in ATM network. In this paper I propose the Constrained Multicast Tree with Virtual Destination(DMTVD) heuristic algorithm as least cost multicast routing algorithm. The service is categorized into two types, as delay sensitive and non in CMTVD algorithm. For the delay sensitive service type, the cost optimized route is the Minimum Cost Stenier Tree connecting all the destination node group, virtual destination node group and source node with least costs, subject to the delay along the path being less than the maximum allowable end to end delay. The other side for the non-delay sensitive service, the cost optimized route is the MCST connecting all the multicast groups with least costs, subject to the traffic load is balanced in the network. The CMTVD algorithm is based on the Constrained Multicasting Tree algorithm but regards the nodes branching multiple destination nodes as virtural destination node. The experimental results show that the total route costs is enhanced 10%-15% than the CTM algorithm.

  • PDF