본 논문은 프레임 차이 값을 카메라에서 브레이크로 인해 발생하는 높은 유사 콘텐츠의 경계 추출을 허용하는 글로벌 의사 결정 트리를 기반으로 샷 경계 검출 방법을 제공합니다. 처음엔 프레임 사이의 차이 값은 지역 $X^2$-히스토그램과 정규화를 통해 계산됩니다. 다음으로, 차이 값 사이의 거리는 정규화를 통해 계산됩니다.
Finding influential factors from given clustering result is a typical data science problem. Genetic Algorithm based method is proposed to derive influential factors and its performance is compared with two conventional methods, Classification and Regression Tree (CART) and Chi-Squared Automatic Interaction Detection (CHAID), by using Dunn's index measure. To extract the influential factors of preference towards political parties in South Korea, the vote result of $18^{th}$ presidential election and 'Demographic', 'Health and Welfare', 'Economic' and 'Business' related data were used. Based on the analysis, reverse engineering was implemented. Implementation of reverse engineering based approach for influential factor analysis can provide new set of influential variables which can present new insight towards the data mining field.
본 논문에서는 모션켑쳐데이타를 이용한 두 캐릭터간의 빠른 충돌감지에 대한 연구를 논의한다. 본 연구의 목적이 군중 시뮬레이션이기 때문에, 제안한 알고리즘은 캐릭터를 실린더 형태로 모델링 한 후에 Rough한 충돌감지를 목표로 한다. 이를 위해 계층적인 바운딩 박스 데이타 구조인 MOBB를 제안한다. MOBB는 모션클립에 대한 시공간 바운딩 박스이며, 제안된 알고리즘에 대한 테스트 결과 2배 이상의 속도 향상이 있음을 밝힌다.
PURPOSES : To operate more efficient traffic management system, it is utmost important to detect the change in congestion level on a freeway segment rapidly and reliably. This study aims to develop classification method of congestion change type. METHODS: This research proposes two classification methods to capture the change of the congestion level on freeway segments using the dedicated short range communication (DSRC) data and the vehicle detection system (VDS) data. For developing the classification methods, the decision tree models were employed in which the independent variable is the change in congestion level and the covariates are the DSRC and VDS data collected from the freeway segments in Korea. RESULTS : The comparison results show that the decision tree model with DSRC data are better than the decision tree model with VDS data. Specifically, the decision tree model using DSRC data with better fits show approximately 95% accuracies. CONCLUSIONS : It is expected that the congestion change type classified using the decision tree models could play an important role in future freeway traffic management strategy.
인공지능(AI)의 한기법인 Space Search 기법을 이용하여 회로의 단선 결함의 유무 및 결함위치를 찾아내는 방법을 제시하였다. 보통 회로의 결함은 단선 및 단락의 구조적 결함으로 나뉘어진다. 두가지 결함 모두 회로의 기능에 중대한 이상을 초래한다. 그중 단선에 의한 회로의 결함에 대하여 다루었다. 우선 회로를 net와 net의 연결 path에 따라 tree 구조로 변환하였다. 서로 독립된 net들은 서로 다른 tree의 node를 이루며 각각의 tree는 적기적으로 연결됨이 없다. 각 tree의 최상단부의 root node에 test vector를 입력하고 최하단부의 leaf node에서 vector를 관찰하여 입력된 test vector와 비교한다. 그 비교 결과 동일 유무에 따라 결함의 유무를 판정한다. 결함이 있다고 판정된 leaf node는 depth search 방법에 의하여 root node쪽으로 test vector를 관찰하여, 전기적 신호에 의하여 회로의 서놔 단선된 위치를 찾아내도록 하는 방법을 제시하였다.
네트워크 기반의 침입탐지시스템에서는 수집된 패킷데이타의 분석을 통해 침입인지 정상행위 인지를 판단하여 경보를 발생 시키며 이런 경보데이타의 양은 기하급수적으로 증가하고 있다. 보안관리자는 이러한 대량의 경보데이타들을 분석하고 통합 관리하여 네트워크 보안레벨을 진단하거나 시간에 따른 적절한 대응을 하는데 유용하게 사용하여야 한다. 그러나 오경보의 비율이 너무 높아 경보 데이터들간의 상관관계 분석이나 고수준의 의미 분석에 어려움이 많으므로 분석결과에 대한 신뢰성이나 분석의 효율성이 낮아지는 문제점을 가진다. 이 논문에서는 데이타 마이닝의 분류 기법을 적용하여 오경보율을 최소화하는 방법을 제안한다. 결정트리기반의 분류 기법을 오경보 분류 모델로 적용하여 오경보들 중 실제는 공격이 아님에도 불구하고 공격이라 판단된 오경보를 정상으로 분류할 수 있는 경보 데이타 분류 모델을 설계하고 구현한다. 구현된 경보데이타 분류 모델은 오경보율을 최소화하므로 경보데이타의 분석 및 통합을 통해 경보메시지의 축약 및 침입탐지시스템의 탐지율을 높이는데 활용될 수 있다.
본 논문에서는 효율적인 비디오 데이터베이스를 구축하기 위하여 카메라와 객체 파라미터를 이용한 트리-기반 계층형 영상 모자이크 시스템을 제시한다. 장면 전환 검출을 위하여 그레이-레벨 히스토그램 차이와 평균 명암도 차이를 이용한 방법을 제시하였다. 카메라 파라미터는 최소 사각형 오류 기법과 어파인 모델을 이용하여 측정하고, 두 입력 영상의 유사성을 측정하기 위하여 차영상을 이용한다. 또한 동적 객체는 매크로 블록 설정에 의하여 검색되고 영역 분할과 4-분할 탐색에 의하여 추출한다. 동적 객체의 표현은 동적 궤도 평가 함수에 의하여 수행되고 블러링을 통하여 부드럽고 완만한 모자이크 영상을 구축한다.
본 논문은 MIMO 통신 시스템을 위한 Dijkstra 탐색 기반의 제한된 연산량을 갖는 스피어 디코딩 (sphere decoding; SD) 알고리즘을 제안하고 이에 대한 성능을 평가한다. Dijkstra 탐색 기반의 SD는 MIMO 심볼 검파 과정에서 저 복잡도로 준 최적의 에러율 성능을 달성하는 효율적인 tree 탐색 알고리즘이다. 하지만 Dijkstra 탐색 기반의 SD는 채널 환경에 따라 연산량이 가변적이고, 최악의 경우 전역 탐색의 경우에 해당하는 높은 연산량을 갖는 심각한 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해서 연산량을 제한시킨 새로운 Dijkstra 탐색 기반의 SD 알고리즘을 제시한다. 제안된 알고리즘은 연산량이 제한되었음에도 여전히 준 최적의 에러율 성능을 달성함을 모의 실험을 통해 검증하였다.
Partial response maximum likelihood (PRML)과 fixed-delay tree search with decision feedback (FDTS/DF)은 기록 재생 시스템에서 준최적 성능을 보이는 정보열 검출 기법 (sequence detection)으로 알려져 있다. 그러나, 정보열 검출 기법 고유의 metric 연산은 심각한 하드웨어 복잡도를 유발한다. 본 논문은 정보열 검출 기법의 복잡도 문제를 극복하기 위한 대안을 제시한다. 제안된 저 복잡도 기법들은 검출 과정에서 덧셈 및 곱셈의 수를 최소화하여 고속 프로세스 및 저 복잡도 하드웨어 구현에 적합하다. 결정 궤환 드화 깁버 (decision feedback equalization; DFE)을 결합하여 ${\tau}$=2 FDTS/DF와 동일한 성능을 보이며, 기록 밀도 S>5.6에서 PR(1111)ML의 성능을 능가함이 모의 실험을 통해 보여진다.
본 논문은 단일 링크드 리스트의 사이클을 검출하는데 특화된 Floyd의 거북이와 토끼 경주법이 다중 입력, 다중 출력을 갖는 무 방향 그래프, 방향 그래프, 트리 등에 대해서는 사이클 검출 실패의 단점을 보완한 알고리즘을 제안하였다. 제안된 알고리즘은 단순히 단일 간선을 갖는 원천(source)과 싱크(sink)를 가지치기하는 단일 간선 노드 전정 사이클 검출 방법을 적용하였다. 제안된 알고리즘을 다양한 리스트, 무 방향 그래프, 방향 그래프, 트리 등에 적용한 결과 모든 경우에 대해 사이클을 검출하는데 성공하였다. 따라서 제안된 알고리즘은 사이클 검출 분야에서 가장 단순하고 빠른 장점을 갖고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.