• Title/Summary/Keyword: Treatment process

Search Result 10,101, Processing Time 0.04 seconds

Performance evaluation of nitrate removal in high TDS wet scrubber wastewater by ion exchange resin with dissolved air flotation (DAF) process

  • Kim, Bongchul;Yeo, Inseol;Park, Chan-gyu
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • The regulations of the International Maritime Organization (IMO) have been steadily strengthened in ship emissions. Accordingly, there is a growing need for development of related technologies for the removal of contaminants that may occur during the treatment of SOx and NOx using a wet scrubber. However, this system also leads to wastewater production when the exhaust gas is scrubbed. In this research, we evaluated the performance of an ion selective resin process in accordance with scrubber wastewater discharge regulations, specifically nitrate discharge, by the IMO. Accelerated real and synthetic wastewater of wet scrubbers, contained high amounts of TDS with high nitrate, is used as feed water in lab scale systems. Furthermore, a pilot scale dissolved air flotation (DAF) using microbubble generator with ion exchange resin process was combined and developed in order to apply for the treatment of wet scrubber wastewater. The results of the present study revealed that operating conditions, such as resin property, bed volume (BV), and inlet wastewater flow rate, significantly affect the removal performance. Finally, through a pilot test, DAF with ion exchange resin process showed a noticeable improvement of the nitrate removal rate compared to the single DAF process.

Advanced Wastewater Treatment Process using Rotating Activated Bacillus Contactor (RABC) (망상형 회전식 바실러스 접촉장치를 이용한 하수의 고도처리공정에 관한 연구)

  • Kim, Eung-Ho;Cho, Yoen-Je;Park, Seong-Joo;Shin, Kwang-Soo;Yim, Soo-Bin;Jung, Jin-Kwon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.190-195
    • /
    • 2004
  • A new technology for advanced wastewater treatment was developed using a modified Rotating Biological Contactor (RBC) process, named as Rotating Activated Bacillus Contactor (RABC) process that utilizes Bacillus sp., the facultatively anaerobic or activated microaerophilic bacteria on multiple-stage reticular rotating carriers, as a predominant species. The RABC process for a municipal wastewater with relatively low concentrations of organics, nitrogen, and phosphorus showed stable and high removal efficiencies, less than $BOD_5$ 10 mg/L, T-N 15 mg/L, and T-P 1.5 mg/L in final effluent. The performance load of RABC process was shown to be $1.23kg{\cdot}BOD/m^2{\cdot}day$ for the first stage (average $0.31kg{\cdot}BOD/m^2{\cdot}day$ for the total stages) based on both removed BOD and converted disc area corresponding to the reticular one. The sludge produced in the RABC process is characterized by low generation rate (about $0.18kg{\cdot}MLSS/kg{\cdot}BOD$) and excellent settleability. The number ratio of Bacillus ($2.4{\times}10^6CFU/ml$) to heterotrophic bacteria ($3.6{\times}10^7CFU/ml$) inhabiting in the biofilms of the RABC process was 6.7 %, indicating that Bacillus sp. was a predominant species in the biofilms. The RABC process with reticular rotating carriers showed its excellent performance for the advanced wastewater treatment without any offensive odor problem due to organic overloading.

Peroxone ($O_3/H_2O_2$) Process in Drinking Water Treatment (정수처리에서의 Peroxone ($O_3/H_2O_2$) 공정)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Bin, Jae-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.296-308
    • /
    • 2010
  • The peroxone process overcomes many of the limitations associated with conventional and advanced water treatment systems using chlorine disinfection and ozone oxidation processes. Ozone and hydrogen peroxide generate highly reactive hydroxyl free radical which oxidize various organic compounds and has highly removal efficiency. The key issue to operate peroxone process is developing the method to achieve high process effectiveness when scavengers that inhibit generation of OH radicals or consume OH radicals are co-existing in the process. Also many studies, to minimize inorganic oxidative by-products such as bromate and to reduce disinfection by-products after chlorination behind peroxone process, are needed. And we should consider the excess residual hydrogen peroxide in the water. On-line instruments and control strategies need to be developed to ensure effective and robust operation under conditions of varying load. If problems above mentioned are solved, peroxone process will be applied diversely for water treatment.

Dry-Heat Treatment Process for Enhancing Viral Safety of an Antihemophilic Factor VIII Concentrate Prepared from Human Plasma

  • Kim, In-Seop;Choi, Yong-Woon;Kang, Yong;Sung, Hark-Mo;Shin, Jeong-Sup
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.997-1003
    • /
    • 2008
  • Viral safety is a prerequisite for manufacturing clinical antihemophilic factor VIII concentrates from human plasma. With particular regard to the hepatitis A virus (HAV), a terminal dry-heat treatment ($100^{\circ}C$ for 30 min) process, following lyophilization, was developed to improve the virus safety of a solvent/detergent-treated antihemophilic factor VIII concentrate. The loss of factor VIII activity during dry-heat treatment was of about 5%. No substantial changes were observed in the physical and biochemical characteristics of the dry-heat-treated factor VIII compared with those of the factor VIII before dry-heat treatment. The dry-heat-treated factor VIII was stable for up to 24 months at $4^{\circ}C$. The dry-heat treatment after lyophilization was an effective process for inactivating viruses. The HAV, murine encephalomyocarditis virus (EMCV), and human immunodeficiency virus (HIV) were completely inactivated to below detectable levels within 10 min of the dry-heat treatment. Bovine herpes virus (BHV) and bovine viral diarrhea virus (BVDV) were potentially sensitive to the treatment. However porcine parvovirus (PPV) was slightly resistant to the treatment. The log reduction factors achieved during lyophilization and dry-heat treatment were ${\geq}5.55$ for HAV, ${\geq}5.87$ for EMCV, ${\geq}5.15$ for HIV, 6.13 for BHV, 4.46 for BVDV, and 1.90 for PPV. These results indicate that dry-heat treatment improves the virus safety of factor VIII concentrates, without destroying the activity. Moreover, the treatment represents an effective measure for the inactivation of non-lipid-enveloped viruses, in particular HAV, which is resistant to solvent/detergent treatment.

The Dye Ability of Volcanic Ash on Cotton Knitted Fabrics Treated with Acrylic Copolymer (수지처리한 면 편성물의 화산재 염색성능에 관한 연구)

  • Yu, Bok-Seon;Shin, In-Su
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.6
    • /
    • pp.13-19
    • /
    • 2008
  • In this paper, the dyeing ability of the volcanic ash dyeing on cotton knitted fabrics were investigated. Acrylic copolymer was used to improve the depth of fabric color in the dyeing process. K/S values of dyed fabrics were measured to examine the dyeing properties. Two different classes of dyeing process were tested; (1) volcanic ash dyeing after pretreatment and (2) simultaneous co-treatment with volcanic ash and acrylic copolymer. In the first process, the effects of parameters such as the concentration of volcanic ash, concentration of Na2S04, dyeing time, dyeing temperature and pH of dyebath were noted. In the second process, the effects of parameters such as concentration of acrylic copolymer, dyeing time and temperature, and drying temperature were noted. Experimental results showed that the co-treatment of acrylic copolymer improved the dyeing properties of cotton knitted fabrics with volcanic ash. For the first dyeing experiment, concentration of dispersing agent was 0.1%, concentration of volcanic ash was 4%, treatment time was 20minutes, concentration of $Na_2SO_4$ was 2%, treatment temperature was $60^{\circ}C$ and treatment pH of dyebath was neutral. In the second dyeing experiment, concentration of acrylic copolymer was 2%, treatment temperature was $80^{\circ}C$, treatment time was 40 minutes, and treatment drying temperature was $150^{\circ}C$.

Research of Sea Food Wastewater Treatment using Membrane Filter (Membrane Filter를 이용한 수산물 가공폐수처리에 대한 연구)

  • Han, Dong-Joon
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.4
    • /
    • pp.119-130
    • /
    • 2007
  • Sea food wastewater including high concentration of organics and nutrients is hard to treat stably by established traditional activated sludge process. This research is aimed to obey more and more of strengthened the law and to secure stable effluents by using advanced treatment process applied membrane filter in aeration tank for treatment of wastewater from marine products. It must maintain pH of influent over 6.0 to keep up stably biological sludge of advanced treatment process. At 38hr of HRT, removal rates of TBOD and TCOD were 99.9% and 99.4% respectively and TSS also removed with high efficiency. Most organics in the effluent was constituted with soluble type materials, it caused that membrane filter installed aeration tank should remove minute suspended particles. The reactor was operated well to get stable treatment results for operation period, in spite of high loading of organics like that $0.67{\sim}1.67\;kgTBOD/m^3/day$ of organics loading and $0.10{\sim}0.21\;kgBOD_5/kgMLSS/day$ of F/M ratio. At $36{\sim}48hr$ of HRT, removal rates of T-N and T-P were $89.7{\sim}90.7%\;and\;91.5{\sim}96.0%$ respectively. It means this treatment process also work to remove nutrients of high concentration. Upon investigation of advanced treatment's operation factors, optimum SRT was about 30days and average SNR that showed tendency to increase according to increase water temperature was calculated 0.014 gN/g MLVSS/d. SDNR was risen in conformity to increase F/M ratio of Non-aeration tank and investigated as $0.038{\sim}0.051\;gN/gMLVSS/d$.

Reduction of the Offensive Odor from Confectionery Wastewater Plant (제과공장의 폐수처리장에서 발생하는 악취 저감)

  • 김영식;손병현;조상원;정종현
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.62-69
    • /
    • 1998
  • It has been studied that the measurement of odor component emission at confectionery manufacture. The objects of this study were to investigate reduction of offensive odor. The survey effects of odorous materials are presented as follows. The countermeasure of operating process is to minimize sludge sediment in each unit facility. Especially, in summer, we have to clean the sludge frequently, because anaerobic decomposing is likely to occur easily. The sludge or scum from sedimentation tank pond, and floating tank should be treated quickly. We should avoid overloading operation. In the case of overloading, dissolved oxygen should be increased, the quality of wastewater input should be decreased. When dried cakes from condense tank or floating tank are left in treatment plant, we should cover, to prevent diffusion of smell with masking materials. The seasonal condition of operating should be fixed and the kind of coagulants should be changed because the wastewater in each season have different loading rates and organic materials. Odorous materials are very sensitive to the seasonal temperature variation. Especially, when the amount of rainfall is small and the high temperature of maintenance in long periods, air diffusion rate is large, so odorous materials can make great effect on surroundings comparision with other periods. To reduce odorous gas, as short term method, we had better take ceramic addition method. Especially, in summer we should take ceramic addition method. Also, as long term method, the size of wastewater treatment facility is the most important in the normal operating of wastewater treatment facility. But wastewater treatment facilities in this factory are too old, treatment process is old fashion, and the size is too small. So, large wastewater quantity to treat in summer. As results, the expansion of wastewater treatment facility and the process of improvement are required. Restriction level of odor was exceed. As it is overloaded in summer, the basis cause of odor is that the size of wastewater treatment facility is small. The prediction of air quality equilibrium density variation show that the odorous materials from working place are Amine materials whose smell strength is about 2.5(a little strong degree). We can suppose that in summer is sensitive to temperature variation, smell strength is larger as to reduce the origin of odor. We must expand wastewater treatment facility and improve the process A.S.A.P.

  • PDF

Changes in Microstructure and Mechanical Properties due to Heat Treatment of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca Alloy Sheet Manufactured via Normal Casting and Twin Roll Casting Process (일반주조 및 쌍롤주조 공정으로 제조된 Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca 합금 판재의 열처리에 따른 미세조직 및 기계적 특성 변화)

  • Dong Hwan Eom;No Jin Park
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.359-366
    • /
    • 2023
  • Changes in microstructure and mechanical properties of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca (AZMX1100) alloy sheet manufactured by normal casting and twin roll casting process, were studied according to process and heat treatment. Non-uniform microstructure was observed in the initial sheet produced through both processes, and in particular, tilted dendrites and shifted central segregation were observed in the twin roll casting sheet. It was homogenized through hot rolling and heat treatment, and heat treated at 350℃ and 400℃ to compare the effect of heat treatment temperature. Both sheets were homogenized by the hot rolling process, and the grain size increased as the heat treatment temperature and time increased. It was confirmed that the grain size, deviation, and distribution of the second phase were finer and more homogenized in the TRC sheet. Accordingly, mechanical properties such as hardness, formability, and tensile strength also showed better values. However, unlike other previously reported AZMX alloy systems, it showed low formability (Erichsen value), which was judged by the influence of Al2Ca present in the microstructure.

Optimization of an Advanced Oxidation with Ozone and Ceramic Membrane Integrated Process for Greywater Reuse (중수 재이용을 위한 오존 고도산화 및 세라믹 분리막 일체형 공정의 최적화 연구)

  • Lee, Jonghun;Rho, Hojung;Park, Kwang Duck;Woo, Yun Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.433-441
    • /
    • 2021
  • The aim of this study was to optimize the ozonation and ceramic membrane integrated process for greywater reclamation. The integrated process is a repeated sequential process of filtration and backwash with the same ceramic membrane. Also, this study used ozone and oxygen gas for the backwashing process to compare backwashing efficiency. The study results revealed that the optimum filtration and backwash time for the process was 10 minutes each when comparing the filtrate flow and membrane recovery rate. The integrated process was operated at three different operating conditions with i) 10 minutes for filtration and 10 minutes for ozonation, ii) 10 minutes for filtration and 10 minute for oxygen aeration, and iii) continuous filtration without any aeration for synthetic greywater. The integrated process with ozone backwashing could produce 0.55 L/min of filtrate with an average of 18.42% permeability recovery, while the oxygen backwashing produced 0.47 L/min and 6.26%, respectively. And without any backwashing, the integrated process could produce 0.29 L/min. This shows that the ozone backwash process is capable of periodically recovering from membrane fouling. The resistance of the fouled membrane was approximately 34.4% for the process with ozone backwashing, whereas the resistance was restored by 10.8% for the process with oxygen backwashing. Despite the periodical ozone backwashing and chemical cleaning, irreversible fouling gradually increased approximately 3 to 4%. Approximately 97.6% and 15% turbidity and TOC were removed by ceramic membrane filtration, respectively. Therefore, the integrated process with ozonation and ceramic membrane filtration is a potential greywater treatment process.