• Title/Summary/Keyword: Treatment concentration

Search Result 10,014, Processing Time 0.036 seconds

Manganese treatment to reduce black water occurrence in the water supply

  • Kim, Jinkeun
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.230-236
    • /
    • 2015
  • 26 multi-regional water treatment plants (WTPs) were investigated, to determine the characteristics of manganese (Mn) concentration and removal in Korea. Mn concentrations of raw water in most WTPs were higher than the drinking water standard (i.e., 0.05 mg/L); thus, proper removal of Mn at the WTPs is needed. Mn concentration was generally higher in lakes than rivers due to seasonal lake turnovers. The Mn concentrations of treated water at 26 WTPs in 2012 were less than 0.05 mg/L, due to strict law enforcement and water treatment processes optimization. However, before 2010, those concentrations were more than 0.05 mg/L, which could have led to an accumulation of Mn oxides in the distribution system. This could be one of the main reasons for black water occurrence. Therefore, regular monitoring of Mn concentration in the distribution system, flushing, and proper Mn removal at WTPs are needed, to supply clean and palatable tap water.

Effects of Sulfate Ion Concentration in Nutrient Solution on the Growth and Quality of Artemisia mongolicar var. tenuifolia (배양액 내의 황산이온 농도가 참쑥의 생육과 품질에 미치는 영향)

  • Lee, Yun-Jeong;Park, Kuen-Woo;Suh, Eun-Joo;Cheong. Jin-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.7 no.1
    • /
    • pp.55-61
    • /
    • 1998
  • This experiment was conducted to evaluate the effects of sulfate ion concentration in nutrient solution on the growth and qualify of Mongolian wormwood (Artemisia mongolica var. tenuifolia). Sulfate ion concentration was treated 0, 0.5, 1, 2 and 3mM using the modified nutrient solution composition for herb plants developed by European Vegetable R & D Center in Belgium. The growth of Mongolian wormwood was good at 3mM treatment and dry weight was best at 3mM treatment, Chlorophyll content increased with sulfate ion concentration. Mineral content did not show any significant difference among treatments. But Ca content in tissue markedly decreased at 3mM treatment. Sulfate ion uptake increased in proportion to sulfate ion concentration in nutreint solution, the higher sulfate ion concentration, the more uptake of sulfate ion by plant. At 1mM sulfate ion treatment, essential oil content was best, but the higher sulfate ion concentration resulted in decrease of essential oil content.

  • PDF

A Study on the Solubilisation of Excess Sludge using Microbubble Ozone (잉여슬러지 가용화를 위한 마이크로버블 오존 이용에 관한 연구)

  • Lee, Shun-Hwa;Jung, Kye-Ju;Kwon, Jin-Ha;Lee, Se-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.325-332
    • /
    • 2010
  • This study was conducted with the experiment of solubilisation of excess sludge by microbubble ozone process. To improve ozone contact efficiency, microbubble ozones which its diameter were the avearge 30 ${\mu}m$, microbubble size less than 40 ${\mu}m$ occupied about over 90% of all. In treating sludge using microbubble ozones, in case microbubble ozones are injected at microbubble ozone dosage of 0.34 g $O_3/g$ SS or less regardless of sludge concentration, microbubble ozone consumption rate was found to be 100% with no emission of waste ozones. In treating sludges by each concentration, in case the initial SS concentration of sludge is set to 6,447 mg/L, 5,557 mg/L, 3,180 mg/L, 1,092 mg/L and 515 mg/L, the amount of removed SS tended to increase with increase in initial SS concentration for the same microbubble ozone dosage, and treatment of sludge with high initial SS concentration was effective in raising the oxidation efficiency of microbubble ozones. On the other hand, as a result of reviewing acid, alkali and microbubble ozone treatment as composite treatment of sludge, use of acid treatment for the pre-treatment of microbubble ozone was more effective than alkali treatment, and in case of treatment at microbubble ozone dosage 0.05g $O_3/g$ SS with the concentration of sulfuric acid infused in the sludge, the amount of removed SS, 153.9 g, was 1.9 times more than 81.2 g the amount of single treatment of microbubble ozone.

Effect of the Treatment Methods of Ethanol and Glycerine on Preserved Flower Quality of Carnation 'Desio' (에탄올 및 글리세린 처리방법이 카네이션 '데지오' 보존화의 품질에 미치는 영향)

  • Lim, Young-Hee;Oh, Wook
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.37-45
    • /
    • 2012
  • This study was carried out to examine the optimal treatment conditions of ethanol and glycerine for processing technology development of preserved flowers in carnation (Dianthus caryophyllus) 'Desio' commonly used for flower design. For this purpose, effects of dipping duration of ethanol solution and treatment duration and concentration of glycerine on preserved flower quality were evaluated. Ethanol treatment resulted in perfect dehydration and decoloration of petals and it was proper at 24~48 hours under high brightness and low chroma. Appropriate concentration and time of glycerine treatment was 30% at 36 hours because it resulted in Munsell value of 4.0R in Hue, 6.49 in Value, and 19.8 in Chroma (4.0R 6.49/14) representing the most approximate value to that of fresh petals. Decreasing rate in weight after desiccation tended to reduce by longer time of immersing and higher concentration. Weight after 12 hours of immersing reduced up to 86~90% according to treatment time in non-treatment group of glycerin, meanwhile, it reduced up to 51~69% under higher concentration of 40%. However, weight after 48 hours of immersing reduced up to 90% regardless of desiccation time in non-treatment group of glycerine, to the contrary, decreasing rate reduced by 46~54% through glycerine treatment of 40%. Time for desiccation required 24 hours in glycerin concentration of 10~20% except 6 hours of immersing time, however, higher concentration resulted in increased time up to 48 hours.

Effect of Co-existence of Carbofuran and Chlorothalonil on the Short-term Bioconcentration Factor in Brachydanio rerio(zebrafish) (Carbofuran과 Chiorothalonil의 공존이 Brachydanio rerio(zebrafish)를 이용한 단기간 생물농축계수의 측정에 미치는 영향)

  • 민경진;차춘근
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.64-71
    • /
    • 1997
  • This study was performed to investigate the effect of co-existence of carbofuran and chlorothalonil on the short-term bioconcentration factor in Brachydanio rerio(zebrafish). The fishes were exposed to the single and combined treatment of carbofuran and chlorothalonil for 1, 3 and 5 days. Experimental concentrations of carbofuran were 0.05 and 0.10 ppm under the single treatment. And those of chlorothalonil were 0.005 and 0.010 ppm. Experimental concentrations of the combined treatment of carbofuran and chlorothalonil were 0.05 ppm+0.005 ppm, 0.05 ppm+0.010 ppm, 0.10 ppm+0.005 ppm for 1, 3 and 5 days, respectively. Carbofuran and chlorothalonil in fish and in test water were extracted with n-hexane and acetonitrile. GC-ECD was used to detect and quantitate carbofuran and chlorothalonil. 1-day, 3-day and 5-day bioconcentration factors(BCF$_1$, BCF$_3$ and BCF$_5$) of each pesticide were obtained from the quantitation results. The depuration rate of each pesticide was determined over the 24-h period after combined treatment. The results were as follows: Carbofuran did not bioaccumulate in zebrafish under the single and combined treatment for testing periods. BCF$_1$ values of chlorothalonil in concentration of 0.005 and 0.010 ppm under the single treatment were 0.508, 0.621, BCF$_3$ were 1.327, 1.511 and BCF$_5$ were 1.331, 1.597, respectively. BCF$_1$ values of chlorothalonil were 0.512, 0.520 and 0.619, respectively, when the concentration of carbofuran and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. BCF$_3$ values of chlorothalonil 1.341, 1.338 and 1.513, respectively, and BCF$_5$ values of chlorothalonil were 1.332, 1.327 and 1.521, respectively, under the above combined treatment. Depuration rate constants of chlorothalonil in concentration of 0.005 and 0.010 ppm under the single treatment were 0.011 and 0.012. Depuration rate constants of chlorothalonil were 0.011, 0.010 and 0.011, when the concentration of carbofuran and chlorothalonil in combined treatment were 0.05+0.005, 0.05+0.010 and 0.10+0.005 ppm. It was observed that no significant difference of carbofuran and chlorothalonil concentration in fish extracts, test water, BCFs and depuration rate constants of carbofuran and chlorothalonil between combined treatment and single treatment. It was considered that no appreciable interaction at experimental concentrations due to lower concentrations than LC$_{50}$. It is suggested that the difference of BCFs between carbofuran and chlorothalonil due to those of fat composition of fish and solubility of carbofuran and chlorothaionil.

  • PDF

Effect of sewage flow on treatment efficiency of small scale wastewater treatment plant in rural community (농촌 지역에서 유입 유량이 소규모 하수처리장 처리 효율에 미치는 영향)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.267-274
    • /
    • 2016
  • Sewerage supply in rural community is the important for water quality protection of water system such as river, lake and wetland. And characteristic of small scale wastewater system that have wide range of inflow and concentration in sewage should be considered for stable operation of small scale wastewater treatment plant. In this research, characteristics of flow ratio (flow / designed flow), effect on treatment efficiency of small scale wastewater treatment plant and assessment of optimal flow ratio were conducted through analysis on operation result of 18 small scale wastewater treatment plant in Bong-hwa gun. As a result, flow ratio shows the higher value during summer. However pollutants concentration in sewage was shown the higher concentration during autumn and winter. Treatment of small scale wastewater treatment plant is increased when flow ratio increased, and nutrient treatment efficiency is more sensitive to change of flow ratio than organic compound and suspended solids. According to this research result, it need to be maintained flow ratio 0.8 over value for stable treatment efficiency of small scale wastewater treatment plant.

Effects of elevated CO2 concentration and increased temperature on leaf quality responses of rare and endangered plants

  • Jeong, Heon-Mo;Kim, Hae-Ran;Hong, Seungbum;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Background: In the study, the effects of elevated $CO_2$ and temperature on the nitrogen content, carbon content, and C:N ratio of seven rare and endangered species (Quercus gilva, Hibiscus hambo, Paliurus ramosissimus, Cicuta virosa, Bupleurum latissimum, Viola raddeana, and Iris dichotoma) were examined under control (ambient $CO_2$ + ambient temperature) and treatment (elevated $CO_2$ + elevated temperature) for 3 years (May 2008 and June 2011). Results: Elevated $CO_2$ concentration and temperature result in a decline in leaf nitrogen content for three woody species in May 2009 and June 2011, while four herb species showed different responses to each other. The nitrogen content of B. latissimum and I. dichotoma decreased under treatment in either 2009 and 2011. The leaf nitrogen content of C. virosa and V. raddeana was not significantly affected by elevated $CO_2$ and temperature in 2009, but that of C. virosa increased and that V. raddeana decreased under the treatment in 2011. In 2009, it was found that there was no difference in carbon content in the leaves of the six species except for that of P. ramosissimus. On the other hand, while there was no difference in carbon content in the leaves of Q. gilva in the control and treatment in 2011, carbon content in the leaves of the remaining six species increased due to the rise of $CO_2$ concentration and temperature. The C:N ratio in the leaf of C. virosa grown in the treatment was lower in both 2009 and 2011 than that in the control. The C:N ratio in the leaf of V. raddeana decreased by 16.4% from the previous year, but increased by 28.9% in 2011. For the other five species, C:N ratios increased both in 2009 and 2011. In 2009 and 2011, chlorophyll contents in the leaves of Q. gilva and H. hamabo were higher in the treatment than those in the control. In the case of P. ramosissimus, the ratio was higher in the treatment than that in the control in 2009, but in 2011, the result was the opposite. Among four herb species, the chlorophyll contents in the leaves of C. virosa, V. raddeana, and I. dichotoma did not show any difference between gradients in 2009, but decreased due to the rise of $CO_2$ concentration and temperature in 2011. Leaf nitrogen and carbon contents, C:N ratio, and chlorophyll contents in the leaves of seven rare and endangered species of plant were found to be influenced by the rise and duration of $CO_2$ concentration and temperature, species, and interaction among those factors. Conclusions: The findings above seem to show that long-term rise of $CO_2$ concentration, and temperature causes changes in physiological responses of rare and endangered species of plant and the responses may be species-specific. In particular, woody species seem to be more sensitive to the rise of $CO_2$ concentration and temperature than herb species.

Study on Biochemical Constituents of Caprine Ovarian Follicular Fluid after Superovulation

  • Mishra, O.P.;Pandey, J.N.;Gawande, P.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1711-1715
    • /
    • 2003
  • The experiment was designed on 42 non pregnant Black Bengal goat. Out of which 18 were subjected to a superovulatory treatment comprising of eCG and hCG for embryo transfer study. The remaining 24 goats received no treatment and served as control for parameter studied as well as recipient for embryo transfer studies. Important biochemical constituents such as acid and alkaline phosphatase, total protein and cholesterol and inorganic phosphorus were estimated in the follicular fluid of control and treated group and the values were separately recorded for small medium and large size follicle. The results indicated a significant effect on acid phosphotase activity due to size of follicle. The value increased progressively from small to medium and from medium to large follicles. Alkaline phosphotase activity showed reverse trend. Alkaline phosphotase decreased progressively as size increased. The concentration of inorganic phosphorus did not reveal any significant difference between the control and treatment groups and also between the different size follicles. The concentration of protein decreased significantly from small to medium and from medium to large, although no difference was observed between the control and treatment groups. The concentration of Cholesterol in the follicular fluid indicated a significant increase from small to medium and to large follicle. Here also no difference was observed due to treatment. Similar in the composition of follicular fluid in the respect of above mentioned constituents indicated no of super ovulatory treatment on follicular fluid composition.

A Study on Seasonal Nitrogen Treatment Characteristics according to Design of Constructed Wetland (인공습지의 형태에 따른 계절별 질소처리 특성 연구)

  • Son, Yeong-Kwon;Yoon, Chun-Gyeong;Kim, Jun-Sik;Kim, Hyung-Joong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.94-101
    • /
    • 2012
  • The performance data for eight years from a free-surface-flow constructed wetland system receiving agricultural tailwater were used to analyze denitrification rate and nitrogen treatment characteristics according to season and wetland design. Seasonal difference between growing season (March~November) and winter season (December~February) was shown in the concentration of all nitrogen species. Seasonal nitrogen treatment has similar trend with temperature and measured denitrification rate. The highest denitrification rate was measured in July, but treatment efficiency was most higher in May and June. Nitrogen absorption of vegetation could affect to these wetland performances, therefore dense population of wetland vegetation might be helpful. According to design of wetland, at least 25~50 m of wetland length was needed to decrease effluent T-N concentration to background concentration in growing season. In winter season, wetland needed much longer distance to reduce T-N concentration. Mass removal rate was continuously high through whole year because runoff coefficient was low in winter season. Applicability of constructed wetland was observed for the total maximum daily load that control T-N load.

Influence of mixed liquor suspended solids on the removal efficiency of a hybrid membrane bioreactor

  • Palmarin, Matthew J.;Young, Stephanie
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.11-22
    • /
    • 2016
  • The characterization of treatment performance with respect to mixed liquor suspended solids (MLSS) concentration enables greater control over system performance and contaminant removal efficiency. Hybrid membrane bioreactors (HMBRs) have yet to be well characterized in this regard, particularly in the context of greywater treatment. The aim of this study, therefore, was to determine the optimal MLSS concentration for a decentralized HMBR greywater reclamation system under typical loading conditions. Treatment performance was measured at MLSS concentrations ranging from 1000 to 4000 mg/L. The treated effluent was characterized in terms of biochemical oxygen demand ($BOD_5$), chemical oxygen demand (COD), turbidity, ammonia ($NH_3$), total phosphorus (TP), total kjeldahl nitrogen (TKN), and total nitrogen (TN). An MLSS concentration ranging from 3000 to 4000 mg/L yielded optimal results, with $BOD_5$, COD, turbidity, $NH_3$, TP, TKN, and TN removals reaching 99.2%, 97.8%, 99.8%, 99.9%, 97.9%, 95.1%, and 44.8%, respectively. The corresponding food-to-microorganism ratio during these trials was approximately 0.23 to 0.28. Operation at an MLSS concentration of 1000 mg/L resulted in an irrecoverable loss of floc, and contaminant residuals exceeded typical guideline values for reuse in non-potable water applications. Therefore, it is suggested that operation at or below this threshold be avoided.