• 제목/요약/키워드: Treadmill running

검색결과 175건 처리시간 0.03초

요통 유무에 따른 달리기 시 충격과 충격 흡수율 (Impact and Shock Attenuation of the Runners with and without Low Back Pain)

  • Lee, Young-Seong;Ryu, Sihyun;Gil, Ho Jong;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제31권1호
    • /
    • pp.16-23
    • /
    • 2021
  • Objective: The purpose of the study was to compare the acceleration and shock attenuation (SA) of the runners with/without low back pain (LBG vs. NLBG) while running at 2.5 m/s, 3.0 m/s, 3.5 m/s and 4.0 m/s. Method: 15 adults without low back pain (age: 23.13±3.46 years, body weight: 70.13±8.94 kg, height: 176.79±3.68 cm, NLBG) and 7 adults with low back pain (age: 27.14±5.81 years, body weight: 73.10±10.74 kg, height: 176.41±3.13 cm, LBG) participated in this study. LBG was recruited through the VAS pain rating scale. All participants ran on an instrumented treadmill (Bertec, USA). Results: The LBG shows statistically greater vertical acceleration at the distal tibia during running at 3.5 m/s and 4.0 m/s and greater shock attenuation from the distal tibia to the head during running at 3.5 m/s compared with the NLBG during running (p<.05). As the speed increased, there was a statistically significant increase in vertical/resultant acceleration and shock attenuation for both groups. Conclusion: The findings indicated that the runners with low back pain (LBG) experience greater impact and shock attenuation compared with non-low back pain group (NLBG) during fast running. However, it is still inconclusive whether high impact on the lower extremity during running is the main cause of low back pain in the population. Thus, it is suggested that the study on low back pain should observe the characteristics of impact during running with individuals' low back pain experience and clinical symptoms.

혼합곡 식이의 지구력 향상 효과 (Improving Effects of Multigrain Feed on Endurance)

  • 오홍근;박정우;강영례;김정훈;서민영;김민걸;두재균;신동화;정은수;채수완;김옥진;이학용
    • 한국식품영양과학회지
    • /
    • 제40권12호
    • /
    • pp.1700-1707
    • /
    • 2011
  • 본 연구에서는 4주간 혼합곡 식이를 공급하여 treadmill을 통한 운동시간과 glycogen 저장능력 변화를 관찰함으로써 지구력 개선에 대한 평가를 하였다. 7주령 SD rats은 정상군 (Nor, 정상식이, n=6), 대조군(Con, 20% 정상식이+80% milled rice, n=6), GI(혼합곡 식이 I, n=6), GII(혼합곡 식이 II, n=6), GIII(혼합곡 III, n=6)와 GIV(혼합곡 식이 IV, n=6)으로 임의 군배정을 하였다. 지구력 시험은 24일간의 적응훈련과 혼합곡 식이 공급을 한 후 실시하였다. 운동 지속시간과 glycogen 저장능력은 혼합곡 식이 공급에 의해서 증가하였다. 더욱이 25 min 운동 그리고/또는 탈진 시까지의 운동 후에서 혈액 내 무기질 인, CPK와 lactate의 농도는 혼합곡 투여에 의하여 감소하였으나, GOP, GTP, lactate LDH의 농도는 군간 차이는 보이지 않았다. 본 연구에서는 4주간의 혼합곡 식이가 운동 지속 시간과 glycogen 장 능력이 증가되었으며, 피로물질인 무기질 인, CPK와 lactate의 농도가 감소시킴으로써 지구력 개선에 도움을 줄 것으로 생각된다.

트레드밀 운동이 청소년기 흰쥐의 기억력과 해마 신경세포생성, BDNF, TrkB, 그리고 전뇌 콜린 세포에 미치는 영향 (Effects of Treadmill Exercise on Memory, Hippocampal Cell Proliferation, BDNF, TrkB, and Forebrain Cholinergic Cells in Adolescent Rats)

  • 이희혁
    • 생명과학회지
    • /
    • 제19권3호
    • /
    • pp.403-410
    • /
    • 2009
  • 본 연구는 청소년기 흰쥐를 대상으로 4주간의 저강도 트레드밀 운동이 기억력과 해마 신경세포생성, BDNF, Trkb, 중격 콜린세포에 미치는 효과를 조사하기 위하여 수행되었다. 먼저 운동이 기억력에 미치는 효과를 step-through avoidance에서 검사한 결과 운동을 실시했던 흰쥐의 retention latency가 대조군에 비해 유의하게 증가되어 기억력 향상을 나타내었다. 이후 기억력 향상기전으로 해마에서 신경세포증식과 BDNF 및 TrkB 단백질 발현을 정량화 한 결과에서도 운동군의 신경세포 생성율과 BDNF와 TrkB 단백질 발현 모두 대조군에 비해 유의하게 증가된 것으로 나타났다. 게다가 운동을 통한 전뇌 콜린세포 수의 증가가 해마 신경세포생성과 BDNF 발현 증가에 기여하는 것으로 나타났다. 이러한 결과는 청소년기 운동이 기억력 향상에 도움이 될 수 있음을 보여주는 것이다.

쥐에서 유산소 운동이 식이섭취 선택에 미치는 영향 (Effects of Aerobic Exercise on Macronutrient Self-Selection in Rats)

  • 김훈;김태영
    • Journal of Nutrition and Health
    • /
    • 제33권8호
    • /
    • pp.794-801
    • /
    • 2000
  • The purpose of this study is to determine the effects of the aerobic exercise type on macronutrient self-selection. Male Sprague-Dawley rats were placed on a macronutrient self-selection diet for 4 weeks. For this purpose, mixed feeds were prescribed for the rats while they were forced to swim and run for 4 weeks. Animals were either swimming exercise or treadmill running exercised at 20m/min(60min/day). Cumulative daily energy and macronutrient intake were determined during this period. The running exercise group gained weight much more than the control group, while the swimming exercise group lost weight less than the control group. Such findings suggests that the former group took more feed. On the other hand, the dietary efficiency of the control group was higher, which implies that no physical exercise would result in a higher dietary efficiency. And there was significant difference of total dietary and calorie intakes among the three groups, Although insignificant in statistical means, it was found that the running group took feed most, which is attributable to the homeostasis requiring the supplementation of the calorie lost by exercise. Also, the running exercise group took the protein and carbohydrate most. while the control group took fat most. The decrease of fat intake by the running exercise group suggests the possibility that the in-body enzymes should adapt themselves to the changing in-body condition caused by the endurance exercise. In contrast, it is conceived that the more intake of the carbohydrate may be attributable to the need of supplementing the nutrient lost by the endurance exercise. As discussed above, the endurance exercise group took carbohydrate and protein and less fat than control group. In particular, it was found that the amount of feed intakes was affected much by types, intensity and duration of the exercises. All in all, such findings would apply to human beings. Now can increase the intakes of carbohydrate and decrease the intake of fat through an effective running exercise program and thereby, change our dietary patterns to the benefit of our body and simultaneously, prevent and adult\\`s diseases by decreasing the in % body fat level.(Korean J Nutrition 33(8) : 794-801, 2000)

  • PDF

달리기 시 발의 인체측정학적 변인과 운동역학적 변인의 관계 (The Relationship between Anthropometric Parameters of the Foot and Kinetic Variables during Running)

  • Lee, Young Seong;Ryu, Jiseon
    • 한국운동역학회지
    • /
    • 제29권3호
    • /
    • pp.173-183
    • /
    • 2019
  • Objective: The aim of this study was to investigate the correlation coefficients between anthropometric parameters of the foot and kinetic variables during running. Method: This study was conducted on 21 healthy young adults (age: $24.8{\pm}2.1yes$, height: $177.2{\pm}5.8cm$, body mass: $73.3{\pm}7.3kg$, foot length: $256.5{\pm}12.3mm$) with normal foot type and heel strike running. To measure the anthropometric parameters, radiographs were taken on the frontal and sagittal planes, and determined the length and width of each segment and the navicular height. Barefoot running was performed at a preferred velocity ($3.0{\pm}0.2m/s$) and a fixed velocity (4.0 m/s) on treadmill (Bertec, USA) in order to measure the kinetic variables. The vertical impact peak force, the vertical active peak force, the braking peak force, the propulsion peak force, the vertical force at mid-stance (vertical ground reaction when the foot is fully landed in mid-stance or at the point where the weight was uniformly distributed on the foot) and the impact loading rate were calculated. Pearson's correlation coefficient was used to investigate the relationship between anthropometric variables and kinetical variables. The significance level was set to ${\alpha}=.05$. Results: At the preferred velocity running, the runner with longer forefoot had lower active force (r=-.448, p=.041) than the runner with short forefoot. At the fixed velocity, as the navicular height increases, the vertical force at full landing moment increases (r= .671, p= .001) and as the rearfoot length increases, the impact loading rate decreases (r=- .469, p= .032). Conclusion: There was a statistically significant difference in the length of fore-foot and rearfoot, and navicular height. Therefore it was conclude that anthropometric properties need to be considered in the foot study. It was expected that the relationship between anthropometric parameters and kinetical variables of foot during running can be used as scientific criteria and data in various fields including performance, injury and equipment development.

부정맥을 이용한 작업부하의 평가 (Measurement of workload by cardiac arrhythmia)

  • 박영택;박경수
    • 대한인간공학회지
    • /
    • 제2권2호
    • /
    • pp.3-10
    • /
    • 1983
  • While three subjects were running on treadmill at five different speeds, their heart beat interval times were measured and analyzed. From the analysis, we discovered some relation- ships between workload and cardiac response, especially cardiac arrhythmia. Using these relationships, a physioligical model for estimating workload was developed. Although pulse rate has been considered as a good measure of physical load, this study shows that it is highly subject dependent and therefore unsuitable for task evalution. It is recommended to use range of heart beat interval times rather than pulse rate in the evaluation of light work.

  • PDF

운동부하가 움직임-호흡 결합에 미치는 영향 (Effect of the Exercise Load on the Locomotor-Respiratory Coupling)

  • 남궁영;박은영;박호준
    • 한국전문물리치료학회지
    • /
    • 제5권3호
    • /
    • pp.56-62
    • /
    • 1998
  • The nature of entrainment between the locomotor and the respiratory rhythm was investigated while normal human subjects were walked or running on a treadmill. The purpose of this study was to analyze the incidence and type of coordination between the locomotor and the respiratory rhythm during running at different work load. The experiments were carried out on 12 untrained volunteers exercising at 3 work loads (2 METs, 3 METs, 4 METs in randomized order). The gait cycle was measured by electromyography (EMG) signal of gastrocnemius firing and the respiratory cycle was measured by a thermometer. We found that the ratio between the locomotor and the respiratory rhythm existed and 2:1 ratio between the locomotor-respiratory coupling was dominant at 2 METs and 3 METs.

  • PDF

운동훈련(運動訓練)에 대(對)한 심폐기능(心肺機能)의 적응(適應)에 관(關)한 연구(硏究) (Cardio-pulmonary Adaptation to Physical Training)

  • 조강하
    • The Korean Journal of Physiology
    • /
    • 제1권1호
    • /
    • pp.103-120
    • /
    • 1967
  • As pointed out by many previous investigators, the cardio-pulmonary system of well trained athletes is so adapted that they can perform a given physical exercise more efficiently as compared to non-trained persons. However, the time course of the development of these cardio-pulmonary adaptations has not been extensively studied in the past. Although the development of these training effects is undoubtedly related to the magnitude of an exercise load which is repeatedly given, it would be practical if one could maintain a good physical fitness with a minimal daily exercise. Hence, the present investigation was undertaken to study the time course of the development of cardio-pulmonary adaptations while a group of non-athletes was subjected to a daily 6 to 10 minutes running exercise for a period of 4 weeks. Six healthy male medical students (22 to 24 years old) were randomly selected as experimental subjects, and were equally divided into two groups (A and B). Both groups were subjected to the same daily running exercise (approximately 1,000 kg-m). 6 days a week for 4 weeks, but the rate of exercise was such that the group A ran on treadmill with 8.6% grade for 10 min daily at a speed of 127 m/min while the group B ran for 6 min at a speed of 200 m/min. In order to assess the effects of these physical trainings on the cardio-pulmonary system, the minute volume, the $O_2$ consumption, the $CO_2$ output and the heart rate were determined weekly while the subject was engaged in a given running exercise on treadmill (8.6% grade and 127 m/min) for a period of 5 min. In addition, the arterial blood pressure, the cardiac output, the acid-base state of arterial blood and the gas composition of arterial blood were also determined every other week in 4 subjects (2 from each group) while they were engaged in exercise on a bicycle ergometer at a rate of approximately 900 kg m/min until exhaustion. The maximal work capacity was also determined by asking the subject to engage in exercise on treadmill and ergometer until exhaustion. For the measurement of minute volume, the expired gas was collected in a Douglas bag. The $O_2$ consumption and the $CO_2$ output were subsequently computed by analysing the expired gas with a Scholander micro gas analyzer. The heart rate was calculated from the R-R interval of ECG tracings recorded by an Offner RS Dynograph. A 19 gauge Cournand needle was inserted into a brachial artery, through which arterial blood samples were taken. A Statham $P_{23}AA$ pressure transducer and a PR-7 Research Recorder were used for recording instantaneous arterial pressure. The cardiac output was measured by indicator (Cardiogreen) dilution method. The results may be summarized as follows: (1) The maximal running time on treadmill increased linearly during the 4 week training period at the end of which it increased by 2.8 to 4.6 times. In general, an increase in the maximal running time was greater when the speed was fixed at a level at which the subject was trained. The mammal exercise time on bicycle ergometer also increased linearly during the training period. (2) In carrying out a given running exercise on treadmill (8.6%grade, 127 m/min), the following changes in cardio·pulmonary functions were observed during the training period: (a) The minute volume as well as the $O_2$ consumption during steady state exercise tended to decrease progressively and showed significant reductions after 3 weeks of training. (b) The $CO_2$ production during steady state exercise showed a significant reduction within 1 week of training. (c) The heart rate during steady state exercise tended to decrease progressively and showed a significant reduction after 2 weeks of training. The reduction of heart rate following a given exercise tended to become faster by training and showed a significant change after 3 weeks. Although the resting heart rate also tended to decrease by training, no significant change was observed. (3) In rallying out a given exercise (900 kg-m/min) on a bicycle ergometer, the following change in cardio-vascular functions were observed during the training period: (3) The systolic blood pressure during steady state exercise was not affected while the diastolic blood Pressure was significantly lowered after 4 weeks of training. The resting diastolic pressure was also significantly lowered by the end of 4 weeks. (b) The cardiac output and the stroke volume during steady state exercise increased maximally within 2 weeks of training. However, the resting cardiac output was not altered while the resting stroke volume tended to increase somewhat by training. (c) The total peripheral resistance during steady state exercise was greatly lowered within 2 weeks of training. The mean circulation time during exorcise was also considerably shortened while the left heart work output during exercise increased significantly within 2 weeks. However, these functions_at rest were not altered by training. (d) Although both pH, $P_{co2}\;and\;(HCO_3-)$ of arterial plasma decreased during exercise, the magnitude of reductions became less by training. On the other hand, the $O_2$ content of arterial blood decreased during exercise before training while it tended to increase slightly after training. There was no significant alteration in these values at rest. These results indicate that cardio-pulmonary adaptations to physical training can be acquired by subjecting non-athletes to brief daily exercise routine for certain period of time. Although the time of appearance of various adaptive phenomena is not identical, it may be stated that one has to engage in daily exercise routine for at least 2 weeks for the development of significant adaptive changes.

  • PDF

미드솔의 반발탄성이 러닝화의 생체역학적 특성에 미치는 영향 (Effects for Running Shoes with Resilience of Midsole on Biomechanical Properties)

  • 유찬일;원용관;김정자
    • 한국운동역학회지
    • /
    • 제25권1호
    • /
    • pp.103-111
    • /
    • 2015
  • Objective : The purpose of this study was to evaluate the effect for running shoes with resilience of midsole on biomechanical properties. Methods : 10 healthy males who had no history of injury in the lower extremity with an average age of 26.5 year(SD=1.84), height of 172.22 cm(SD=4.44) and weight of 67.51 kg(SD=6.17) participated in this study. All subjects ran on the treadmill wearing three different running shoes. Foot pressure data was collected using Pedar-X system(Novel Gmbh, Germany) operating at 100 Hz. Surface EMG signals for biceps femoris, rectus femoris, vastus lateralis, medial lateralis, tibialis anterior, medial gastrocnemius, soleus and peroneus longus were acquired at 1000 Hz using Bignoli 8 System(Delsys Inc., USA). To normalize the difference of the magnitude of muscle contractions, it was expressed as a percentage relative to the maximum voluntary contraction (MVC). The impact resilience of the midsole data was collected using Fastcam SA5 system(Photron Inc., USA). Collected data was analyzed using One-way ANOVA in order to investigate the effects of each running shoes. Results : TPU midsole was significantly wider in contact area than EVA, TPE midsole in midfoot and higher in EMG activity than EVA midsole at biceps femoris. TPE midsole was significantly wider in contact area than EVA midsole in rearfoot and higher in peak pressure than EVA midsole in forefoot. EVA midsole was significantly higher in EMG activity than TPU midsole at tibia anterior. In medial resilience of midsoles, TPE midsole was significantly higher than EVA, TPU midsole. Conclusion : TPU midsole can reduce the load on the midfoot effectively and activate tibialis anterior, biceps femoris to give help to running.

달리기 속도와 경사가 하지관절의 생체역학에 미치는 영향 (The Effect of Running Speed and Slope on the Lower Extremity Biomechanics)

  • 김종빈
    • 융합정보논문지
    • /
    • 제10권4호
    • /
    • pp.160-167
    • /
    • 2020
  • 본 연구는 달리기 시 속도와 경사변화가 하지관절의 생체역학적 요인에 미치는 영향을 보고자 한다. 이를 위해 20대 성인남성 15명이 트레드밀에서 2.7, 3.3 m/s와 -9°, -6°, 0°, 6°, 9°로 달리기를 실시하였고, 속도와 경사 변화에 따른 주행특성(보장, 보빈도), 생체역학적 변인(발목, 무릎, 엉덩관절의 가동범위, 모멘트, 관절파워), 지면반력(수직지면반력, 부하율, 제동력, 추진력)을 측정하였다. 연구결과, 주행특성은 오르막 달리기(UR)가 내리막 달리기(DR)에 비해 크게 나타났다(p<.05). 하지관절의 가동범위와 수직지면반력은 UR에서 크게 나타났고(p<.05), 하지관절의 모멘트와 제동력, 추진력, 부하율은 DR에서 크게 나타났다(p<.05). 관절파워는 발목관절은 DR에서 크고, 엉덩관절에서는 UR이 크게 나타났다(p<.05). 이러한 결과로부터 3.3m/s의 속도로 DR을 달리는 경우에서 발목관절 부상의 영향이 클 것으로 예상된다.