• Title/Summary/Keyword: Tread rubber

Search Result 53, Processing Time 0.016 seconds

Change of Physical Property of Rubber Compound by Terpene Modified Phenolic Resin Structure (테르펜 개질 페놀 수지 구조에 따른 배합고무 물성 변화)

  • Kim, Kun Ok;Kim, Do-Heyoung;Song, Yo Soon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.310-316
    • /
    • 2020
  • Terpene-modified phenolic resins were used to improve the tires wet traction related to the driving safety and also rolling resistance related to fuel efficiency. In this work, alpha-pinene, beta pinene, and delta limonene resins, which constitute different basic structures of terpene-modified phenolic resins, were individually added to the tread compounds of tires and their physical properties were compared with those of the alkyl phenol resin compounds. Alkyl phenolic resins showed no significant difference in tangent delta from terpene-modified phenolic resins at 0 ℃, which is related to wet traction, but showed higher tangent delta at 80 ℃, which is related to rolling resistance, indicating smaller fuel efficiency improvement effects. Among the terpene-modified phenolic resins, beta pinene one showed improved wet traction and fuel efficiency compared to those of other resins. Delta limonene resin showed the best wet traction improvement effect, and alkyl phenolic resins showed relatively high tensile strength and abrasion property. All terpene-modified resins exhibited better rolling resistance than those of alkyl phenolic ones so that they can be said to have better fuel efficiency improvement effects and also to improve other properties compared to those of blanks. Terpene-modified phenolic resins could be used when mixing tire compounds referring to the properties of the phenolic resins revealed in this work, which could result in preparing compounds with improved wet traction and rolling resistance.

A Study on the Collection and Analysis of Tire and Road Wear Particles(TRWPs) as Fine Dust Generated on the Roadside (도로변에서 발생되는 미세먼지로써 타이어와 도로 마모입자 채집과 분석 연구)

  • Kang, Tae-Woo;Kim, Hyeok-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.293-299
    • /
    • 2022
  • Recently, various stakeholder are interested in microplastic to cause pollution of the marine's ecosystem and effort to conduct study of product's life cycle to reduce pollution of marine's ecosystem. The micorplastic refer to materials of the nano- to micro- sized units and it can be classified into primary and secondary. The primary microplastic mean the manufactured for use in the specific field such as the microbead of the cosmetic or cleanser. also, secondary mean the unintentionally generated during use of the product such as the textile crumb by the doing the laundry. Tire and Road Wear Particles(TRWPs) are also defined as secondary microplastic. Typically, TRWPs are created by friction between the tread compound's rubber of the tire and the surface of the road du ring the driving cars. Most of the generated TRWPs exist on the roadside and some of them were carried to marine by the rainwater. In this study, we perform the quantitative analysis of the TRWPs existed in fine dust at the roadside. So, we collected the dust from the roadside in Chungcheongnam-do's C site with a movement of 1,300 cars per the hour. The collected samples were separated according to size and density. And shape analysis was performed using the Scanning Electron Microscope(SEM). We were possible to discover a lot of TRWPs at the fine dust of the 100 ± 20 ㎛. And we analysis it u sing the Thermo Gravimetric Analysis(TGA) and Gas Chromatography/Mass Spectrometer(GC/MS) for the quantitative components from the tire. As a result, it was confirmed that TRWPs generated from the roadside fine dust were included the 0.21 %, and the tire and road components in the generated TRWPs consisted of the 3:7 ratio.

A Basic Study on the Generation of Tire & Road Wear Particles by Differences in Tire Wear Performance (타이어 마모성능 차이에 의한 타이어 마모입자 생성에 관한 기초 연구)

  • Kang, Tae-Woo;Kim, Hyeok-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.561-568
    • /
    • 2021
  • In this study, in order to observe the change in the amount of Tire and Road Wear Particles and the ratio of tire components in it according to the tire wear resistance performance, carried out the evaluation by varying the vulcanization reaction design of the tire tread rubber. In addition, in order to improve the reliability of the evaluation of Tire and Road Wear Particles, the evaluation was performed indoor laboratory test equipment that simulates the condition on real driving to exclude various environmental influences including minerals, driver's habits, road surface, weather, tire structure and pattern designs. After the evaluation in closed space, it is estimated that the amount of collected Tire and Road Wear Particles is 84% compared to 100% of the tire and road wear loss weight, of which 96.4~97.7% was around the road and 2.3~3.6% was in the air. As a result of analy sis of the collected Tire and Road Wear particles, the tire component existed 63~75% in the Tire and Road Wear Particles depending on the wear resistance performance of the tire.