• Title/Summary/Keyword: Travelling Wave

Search Result 120, Processing Time 0.022 seconds

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

Laboratory Experiment of Two-Layered Fluid in a Rotating Cylindrical Container (Simulation of polar Front) (원통형 이층유체의 회전반실험 (극전선 모의))

  • 나정열;최진영
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.296-303
    • /
    • 1994
  • Rotating right cylinder of rigid sloping boundaries(top-bottom) is filled with two-layered fluid. External fluid which has the same density as the lower-layer is pumped through the rim boundary at the bottom, and this induces uniform vertical velocity in the interior that produces the Sverdrup type motion such as southward flowing western boundary current with northward interior horizontal motion. The rigid sloping upper boundary meets with lower layer to simulate so called "polar front", and the upper-layer motion influenced by the lower-layer flow has been observed. Barotropic motion in the western part of the basin while baroclinic motion in the eastern half is always present. In particular, both southward flowing eastern boundary flow and western boundary flow meets near the western wall and it induces northward western boundary flow to separate from the boundary With increased ${\beta}$-effect on the upper0layer the width of western boundary decreases and the separated western boundary flow moves into the interior to form an eddy-like motion. Baroclinic Rosebay wave clearly observed in the easter boundary slowly propagates to the west but it seems to be decayed before travelling to the western boundary. A local topograpic effect imposed on the lower-layer causes very sensitive response of upper layer boundary flows. In the east standing0wave0like features are observed in the west whereas the width of the boundary increases without any evidence of the separation of the western boundary flow.This may be due to the gact that even the lower-lauer barotropic motion feels the topography its influence does not propagate into the upper-layer. With large ${\beta}$-effect on the upper-layer,relatively large scale waves whose wavelengths are greater than the internal radius deformation exist in the interior.

  • PDF

A Study on the Fundamental Cause of Stall Stagnation Phenomena in Surges in Compressor Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.119-137
    • /
    • 2017
  • Although the stall stagnation phenomena have often been experienced in site and also analytically in numerical experiments in surges in systems of compressors and flow paths, the fundamental causes have not been identified yet. In order to clarify the situations, behaviours of infinitesimal disturbance waves superposed on a main flow were studied in a simplified one-dimensional flow model. A ratio of the amplifying rate of the system instability to the characteristic slope of the compressor element was surveyed as the instability enhancement factor. Numerical calculations have shown the following tendency of the factor. In the situation where both the sectional area ratio and the length ratio of the delivery flow-path to the suction duct are sufficiently large, the enhancement factors are greater in magnitude, which means occurrence of ordinary deep surges. However, in the situation where the area ratio and/or the length ratio is relatively smaller, the enhancement factor tends to lessen significantly, which situation tends to suppress deep surges for the same value of the characteristic slope. It could result in the stall stagnation condition. In the domain of area ratio vs. length ratio of the delivery duct to the suction duct, contour-lines of the enhancement factor behave qualitatively similar to those of the stall stagnation boundaries of a fan analytically obtained, suggesting that a certain range of the enhancement factor values could specify the stagnation occurrence. The significant decreases in the factors are observed to accompany appearances of phase lags and travelling waves in the wave motions, which macroscopically suggests breaking down of the complete surge actions of filling and emptying of the air in the delivery duct. The strength of the action is deeply related with acoustic interferences and is evaluated in terms of the volume-modified reduced resonance frequency proposed by the author. These observations have shown the fundamental cause and the sequence of the stall stagnation in principle.

Study of RF Impairments in Wideband Chirp Signal Generator (광대역 첩 신호 발생기를 위한 RF 불균형 연구)

  • Ryu, Sang-Burm;Kim, Joong-Pyo;Yang, Jeong-Hwan;Won, Young-Jin;Lee, Sang-Kon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1205-1214
    • /
    • 2013
  • Recently spaceborne SAR systems are increasing image resolution and frequency. As a high quality image resolution, the wider bandwidth is required and a wideband signal generator with RF component is very complicated and RF impairments of device is increased. Therefore, it is very important to improve performance by reducing these errors. In this study, the transmission signal of the wideband signal generator is applied to the phase noise, IQ imbalance, ripple gain, nonlinear model of high power amplifier. And we define possible structures of wideband signal generator and measure the PSLR and ISLR for the performance assesment. Also, we extract error of the amplitude and phase from the waveform and use a quadratic polynomial curve fitting and examine the performance change due to nonlinear device. Finally, we apply a high power amplifier predistortion method for non-linear error compensation. And we confirm that distortion in the output of the amplifier by intermodulation component is decreased by 15 dB.

A Study on the Sensitivity Compensation of Three-dimensional Acoustic Intensity Probe in the Higher Frequency Range (3차원 음향 인텐시티 프로브의 고주파 영역 감도 보상 연구)

  • Kim, Suk-Jae;Hideo, Suzuki;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.40-50
    • /
    • 1994
  • In this paper, the sensitivity compensation method for three-dimensional acoustic intensity probe in the higher frequency range has been studied. The measurement error in the higher frequency range is generated from the phase mismatch between microphone's signals of the probe. If the wavelength of sound signal measured is less than those of the distance between microphones of the probe, that is, the higher frequency of the sound signal, the bigger measurement error is generated. In this study, we proposed the compensation methods for one-dimensional acoustic intensity probe with two-microphones, and the efficiency of those methods were investigated by numerical calculation of computer. It was most effective method to compensate the phase mismatch between microphone for the acoustic intensity probe was investigated for the sound estimated. and the efficiency of this method in a three-dimensional probe was investigated for the sound wave travelling in the arbitrary direction by numerical calculation of computer. In this result, the efficiency was proved that, for the measurement error of 1dB or less with the three-dimensional probe of 60mm space, the frequency should be less than 1.2kHz without the error compensation method, but the frequency increased up to 2.8kHz with the error compensation method.

  • PDF

Geophysical Study Through Infrasound Observation (인프라사운드 관측을 통한 지구물리학적 연구)

  • Che, Il-Young;Jeon, Jeong-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.495-505
    • /
    • 2006
  • Atmospheric infrasound is defined as low frequency inaudible sound waves generated from natural phenomena and human activities. One property of long-distance travelling of infrasound makes it possible to detect the wave propagated from remote sound sources and to understand many geophysical phenomena generating it. Recently, advanced global infrasound sensor arrays are being deployed to monitor the clandestine nuclear test and to study geophysical phenomena in the world. In Korea, five seismo-acoustic arrays consisting of co-located seismometer and micro-barometer have been operated to discriminate the artificial explosions from the natural earthquakes in and around the Korean Peninsula. In addition to the discrimination purpose, these ways also record distinct infrasonic signals from natural phenomena on global scale such as large earthquake, bolide event, volcanic explosion, typhoon, and so on. As a new frontier in monitoring the earth, infrasound is being applied to understand various phenomena in and above the earth's surface.

Folded Ultra Wideband Monopole Antenna for SDR Application (Software Defined Radio (SDR) 무전기용 접힌 평면 구조의 초광대역 안테나)

  • Oh, Jun-Hwa;Oh, Il-Young;Yook, Jong-Gwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.52-58
    • /
    • 2009
  • We propose a folded monopole antenna with loads, and analyze the roles of design parameters which affect the return loss of the proposed antenna. VSWR < 3 bandwidth of the antenna is 30 ~ 2000 MHz, ranging from the HF/VHF/UHF bands. For operating travelling antenna, we connect six loads at the end of the antenna. The reflected wave is drastically reduced due to the six loads. For improved return loss properties, we use Klopfenstein tape that determine positions and values of six loads. The propose antenna has omni-directional radiational patterns like that of conventional monopole antennas. For wideband impedance transformation, we use the balun which operating frequency region is 10 ~ 1900 MHz. We expect the proposed antenna has important role for the wideband and multi-rold multi-functional communication systems.

The Changes of Sleep-Wake Cycle from Jet-Lag by Age (연령에 따른 비행시차 후의 수면-각성주기 변화)

  • Kim, Leen;Lee, Seung-Hwan;Suh, Kwang-Yoon
    • Sleep Medicine and Psychophysiology
    • /
    • v.3 no.2
    • /
    • pp.18-31
    • /
    • 1996
  • Jet-lag can be defined as the cumulative physiological and psychological effects of rapid air travel across multiple time zones. Many reports have suggested that age-related changes in sleep reflect fundamental changes in the circadian system and in significant declines in slow wave sleep. Jet lag is a dramatic situation in which the changes of the phase of circadian process and homeostatic process of sleep occur. Thus the authors evaluatead the changes of sleep-wake cycle from jet lag by age. Thirty-eight healthy travellers were studied for 3 days before and 7 days after jet-flights across seven to ten time zone. They were aged 19-70, They trareled eastbound, Seoul to North America (USA, Canada). Sleep onset time, wake-up time, sleep latency, awakening frequency on night sleep, awakening duration on night sleep, sleepiness at wake-up and nap length were evaluated. Our results suggest that by the 7 to 10 time zone shift, the old age group was significantly influenced in sleep-wake cycles. The date on which subjective physical condition was recovered was $6.23{\pm}83$ day after arrivals for old age group, while for young and middle age group, $4.46{\pm}1.50$ day and $4.83{\pm}1.52$ day, respectively. In old age group, sleep onset time was later than baselines and could not recover untill 7th day. But in other groups, the recovery was within 5th day. Nap dura fion was longer in old age group through jet lag than younger age group. In other parameters, there was no definite difference among three age groups. Our results suggested that the old age was significantly influenced by the disharmony between internal body clock and sleep-wake cycle needed at the travel site. Thus we proved that recovery ability from jet lag was age-dependent as well as travelling direction-dependent. To demonstrate more definite evidence, EEG monitoring and staging of sleep were funthun encouraged.

  • PDF

Maximum Thrust Condition by Compliant Joint of a Caudal Fin for Developing a Robotic Fish (물고기 로봇 개발을 위한 유연한 꼬리 지느러미 관절의 강성에 따른 최대 추력 조건 연구)

  • Park, Yong-Jai;Jeong, U-Seok;Lee, Jeong-Su;Kwon, Seok-Ryung;Kim, Ho-Young;Cho, Kyu-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • Fish generates large thrust through an oscillating motion with a compliant joint of caudal fin. The compliance of caudal fin affects the thrust generated by the fish. Due to the flexibility of the fish, the fish can generate a travelling wave motion which is known to increase the efficiency of the fish. However, a detailed research on the relationship between the flexible joint and the thrust generation is needed. In this paper, the compliant joint of a caudal fin is implemented in the driving mechanism of a robotic fish. By varying the driving frequency and stiffness of the compliant joint, the relationship between the thrust generation and the stiffness of the flexible joint is investigated. In general, as the frequency increases, the thrust increases. When higher driving frequency is applied, higher stiffness of the flexible joint is needed to maximize the thrust. The bending angles between the compliant joint and the caudal fin are compared with the changes of the thrust in one cycle. This result can be used to design the robotic fish which can be operated at the maximum thrust condition using the appropriate stiffness of the compliant joint.

Wireless Communication at 310 GHz using GaAs High-Electron-Mobility Transistors for Detection

  • Blin, Stephane;Tohme, Lucie;Coquillat, Dominique;Horiguchi, Shogo;Minamikata, Yusuke;Hisatake, Shintaro;Nouvel, Philippe;Cohen, Thomas;Penarier, Annick;Cano, Fabrice;Varani, Luca;Knap, Wojciech;Nagatsuma, Tadao
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.559-568
    • /
    • 2013
  • We report on the first error-free terahertz (THz) wireless communication at 0.310 THz for data rates up to 8.2 Gbps using a 18-GHz-bandwidth GaAs/AlGaAs field-effect transistor as a detector. This result demonstrates that low-cost commercially-available plasma-wave transistors whose cut-off frequency is far below THz frequencies can be employed in THz communication. Wireless communication over 50 cm is presented at 1.4 Gbps using a uni-travelling-carrier photodiode as a source. Transistor integration is detailed, as it is essential to avoid any deleterious signals that would prevent successful communication. We observed an improvement of the bit error rate with increasing input THz power, followed by a degradation at high input power. Such a degradation appears at lower powers if the photodiode bias is smaller. Higher-data-rate communication is demonstrated using a frequency-multiplied source thanks to higher output power. Bit-error-rate measurements at data rates up to 10 Gbps are performed for different input THz powers. As expected, bit error rates degrade as data rate increases. However, degraded communication is observed at some specific data rates. This effect is probably due to deleterious cavity effects and/or impedance mismatches. Using such a system, realtime uncompressed high-definition video signal is successfully and robustly transmitted.