• 제목/요약/키워드: Traveling waves

검색결과 90건 처리시간 0.028초

Design and Prototyping of a Novel Type Piezoelectric Micro-pump

  • Oh, Jin-Heon;Lim, Jong-Nam;Lee, Seung-Su;Heo, Jun;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권5호
    • /
    • pp.181-185
    • /
    • 2008
  • Using the extensional vibration mode of PZT ring, a piezopump is successfully made. The PZT ring is polarized with thickness direction. The traveling extensional wave along the circumference of the ring is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. The proposed piezopump is consisted of coaxial cylindrical shells that are bonded piezoelectric ceramic ring. The pump takes an unobtrusive operation into the simple displacing mechanism using peristaltic traveling waves without the physical moving parts. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump is about 580 ${\mu}l/min$ in flow rate with the highest pressure level of 0.85 kPa, when the driving voltage is 150 $V_p$, 57 kHz.

TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Kim, Hyunsoo;Choi, Jin Hyuk
    • Korean Journal of Mathematics
    • /
    • 제23권1호
    • /
    • pp.11-27
    • /
    • 2015
  • Nonlinear partial differential equations are more suitable to model many physical phenomena in science and engineering. In this paper, we consider three nonlinear partial differential equations such as Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation which serves as a model for the unidirectional propagation of the shallow water waves over a at bottom. The main objective in this paper is to apply the generalized Riccati equation mapping method for obtaining more exact traveling wave solutions of Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation. More precisely, the obtained solutions are expressed in terms of the hyperbolic, the trigonometric and the rational functional form. Solutions obtained are potentially significant for the explanation of better insight of physical aspects of the considered nonlinear physical models.

Modelling and Optimal Design of a Ring-type Structure for the Generation of a Traveling Wave

  • Liu, Xinchang;Civet, Yoan;Perriard, Yves
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권1호
    • /
    • pp.32-39
    • /
    • 2014
  • Traveling wave generation in a ring type stator has been studied. The basic working principle to create traveling wave has been modelled by the superposition of two orthogonal standing waves. Theoretical analysis shows that the length to radius ratio affects the frequency gap between two pseudo orthogonal modes used to create traveling wave. FEM simulation is then discussed and applied to validate the analytical model. At last, a possible optimal solution is reported with FEM verification.

Guided wave formation in coal mines and associated effects to buildings

  • Uyar, Guzin G.;Babayigit, Ezel
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.923-937
    • /
    • 2016
  • The common prospect in diminishing mine-blast vibration is decreasing vibration with increasing distance. This paper indicates that, contrary to the general expectancy, vibration waves change their forms when they are travelling through the low velocity layer like coal and so-called guided waves moving the vibration waves to longer distances without decreasing their amplitudes. The reason for this unexpected vibration increase is the formation of guided waves in the coal bed which has low density and low seismic velocity with respect to the neighboring layers. The amplitudes of these guided waves, that are capable of traveling long distances depending on the seam thickness, are several times higher than that of the usual vibration waves. This phenomenon can many complaints from the residential areas very far away from the blasting sites. Thus, this unexpected behavior of the coal beds in the surface coal mines should also be considered in vibration minimization studies. This study developed a model to predict the effects of guided waves on the propagation ways of blast-induced vibrations. Therefore, vibration mitigation studies considering the nearby buildings can be focused on these target places.

TRAVELING WAVES OF AN SIRS EPIDEMIC MODEL WITH SPATIAL DIFFUSION AND TIME DELAY

  • Du, Yanke;Xu, Rui
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.635-646
    • /
    • 2012
  • This paper is concerned with an SIRS epidemic model with spatial diffusion and time delay representing the length of the immunity period. By using a new cross iteration scheme and Schauder's fixed point theorem, we reduce the existence of traveling wave solutions to the existence of a pair of upper-lower solutions. By constructing a newfashioned pair of upper-lower solutions, we derive the existence of a traveling wave solution connecting the uninfected steady state and the infected steady state.

Clustering and traveling waves in the Monte Carlo criticality simulation of decoupled and confined media

  • Dumonteil, Eric;Bruna, Giovanni;Malvagi, Fausto;Onillon, Anthony;Richet, Yann
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1157-1164
    • /
    • 2017
  • The Monte Carlo criticality simulation of decoupled systems, as for instance in large reactor cores, has been a challenging issue for a long time. In particular, due to limited computer time resources, the number of neutrons simulated per generation is still many order of magnitudes below realistic statistics, even during the start-up phases of reactors. This limited number of neutrons triggers a strong clustering effect of the neutron population that affects Monte Carlo tallies. Below a certain threshold, not only is the variance affected but also the estimation of the eigenvectors. In this paper we will build a time-dependent diffusion equation that takes into account both spatial correlations and population control (fixed number of neutrons along generations). We will show that its solution obeys a traveling wave dynamic, and we will discuss the mechanism that explains this biasing of local tallies whenever leakage boundary conditions are applied to the system.

원판의 비선형 비대칭진동을 위한 수치해 (Numerical solution for nonlinear asymmetric vibrations of a circular plate)

  • 이원경;세르게이 사모일렌코
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.73-80
    • /
    • 2006
  • In order to examine the validity of an asymptotic solution for nonlinear interaction in asymmetric vibration modes of a perfect circular plate, we obtain the numerical solution. The motion of the plate is governed by nonlinear partial differential equation. The initial and boundary value problem is solved by using the finite difference method. The numerical solution is compared with the asymptotic solution. It is found that traveling waves relating clockwise and counterclockwise as well as standing wave are depicted by the numerical solution.

  • PDF

회전형 초음파모터의 소형 위상차 제어기 개발 (Development of Compact Phase-difference Controller for an Ultrasonic Rotary Motor)

  • 이동창;이명훈;이의학;이선표
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.64-71
    • /
    • 2006
  • In this paper, a uniform speed controller for an ultrasonic rotary motor is developed using the phase-difference method. The phase difference method uses traveling waves to drive the ultrasonic motor. The traveling waves are obtained by adding two standing waves that have a different phase to each other. A compact phase-difference driver system is designed and integrated by combining VCO(Voltage Controlled Oscillator) and phase shifter. Theoretically the relationship between the phase difference in time and the rotational speed of the ultrasonic motor is sine function, which is verified by experiments. Then a series of experiments under various loading conditions are conducted to characterize the motor's performance that is the relationship between the speed and torque. Proportional-integral control is adopted for the uniform speed control. The proportional control unit calculates the compensating phase-difference using the rotating speed which is measured by an encoder and fed back. Integral control is used to eliminate steady-state errors. Differential control for reducing overshoot is not used since the response of ultrasonic motor is prompt due to its low inertia and friction-driving characteristics. The developed controller demonstrates reasonable performance overcoming disturbing torque and the changes in material properties due to continuous usage.

두 개의 가속도계를 이용한 배관 감육 감시 (Monitoring Pipe Thinning using Two Accelerometers)

  • 최영철;박진호;윤두병
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.681-686
    • /
    • 2008
  • In this paper, we estimated the degree of pipe thinning by using two accelerometers. It uses measured velocity of flexural wave traveling along the pipes. If the thickness of the wall decreases because of pipe thinning, flexural stiffness of the pipes decreases and accordingly, traveling velocity of flexural wave decreases. Thus, if we install two vibration sensors outside of the pipes and measures traveling velocity of flexural waves regularly, we can estimate and monitor the degree of pipe thinning quickly. In order to test the method we experimented with pipes, and get the result that group velocity varies according to the degree of pipe thinning. It verified this method can be used to monitor the pipe thinning.

  • PDF

공기-물 이상매질 충격파관 문제에 대한 정확한 Riemann 해법 (EXACT RIEMANN SOLVER FOR THE AIR-WATER TWO-PHASE SHOCK TUBE PROBLEMS)

  • 염금수;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.365-367
    • /
    • 2010
  • In this paper, we presented the exact Riemann solver for the air-water two-phase shock tube problems where the strength of the propagated sock wave is moderately weak. The shock tube has a diaphragm in the middle which separates water medium in the left and air medium in the right. By rupturing the diaphragm, various waves such as rarefaction wave, shock wave and contact discontinuity are propagated into water and air. Both fluids are treated as compressible, with the linearized equations of state. We used the isentropic relations for the air and water assuming a weak shock wave. We solved the shock tube problem considering a high pressure in the water and a low pressure in the air. The numerical results cleary showed a left-traveling rarefaction wave in the water, a right-traveling shock wave in the air, and the right-traveling material interface.

  • PDF