• Title/Summary/Keyword: Traveling algorithm

Search Result 275, Processing Time 0.023 seconds

A Study on Algorithm of Bogie Unit Braking System (차세대전동차 대차단위 제동시스템 알고리즘에 관한 연구)

  • Kim, Gil-Dong;Lee, Han-Min;Park, Sung-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1916-1921
    • /
    • 2008
  • In the braking process of rolling stocks, the equivalent braking force is applied to the all bogies. However, the load applied to the front and rear bogie are different in the actual commercial traveling. In the case, since the different slip situation is occurred in each bogie, it is essential to use the independent anti-slip control per bogie unit in order to reduce the loss of braking force. In this paper, the algorithm about bogie unit braking is proposed and verified.

  • PDF

An algorithm for multiple Salesmen problems (다중 경로 탐색 알고리즘)

  • Song, Chi-Hwa;Lee, Won-Don
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.317-320
    • /
    • 2003
  • 본 논문에서는 각 도시마다 가중치가 있는 City domain을 tour하기 위한 문제를 해결하기 위해 Simulated Annealing Algorithm을 확장한 알고리즘을 제시하였고 Capacitated vehicle routing problem을 변형한 Augmented multiple salesman traveling problem을 정의하고 이를 해결하기 위한 에너지 함수와 알고리즘을 제시하였다.

  • PDF

Optimal Geometric Path and Minimum-Time Motion for a Manipulator Arm (로봇팔의 최적 기하학적 경로 및 시간최소화 운동)

  • Park, Jong-Keun;Han, Sung-Hyun;Kim, Tae-Han;Lee, Sang-Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.204-213
    • /
    • 1999
  • This paper suggests a numerical method of finding optimal geometric path and minimum-time motion for a manipulator arm. To find the minimum-time motion, the optimal geometric path is searched first, and the minimum-time motion is searched on this optimal path. In the algorithm finding optimal geometric path, the objective function is minimizing the combination of joint velocities, joint-jerks, and actuator forces as well as avoiding several static obstacles, where global search is performed by adjusting the seed points of the obstacle models. In the minimum-time algorithm, the traveling time is expressed by the linear combinations of finite-term quintic B-splines and the coefficients of the splines are obtained by nonlinear programming to minimize the total traveling time subject to the constraints of the velocity-dependent actuator forces. These two search algorithms are basically similar and their convergences are quite stable.

  • PDF

A Heuristic for Dual Mode Routing with Vehicle and Drone

  • Min, Yun-Hong;Chung, Yerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.79-84
    • /
    • 2016
  • In this paper we consider the problem of finding the triplet (S,${\pi}$,f), where $S{\subseteq}V$, ${\pi}$ is a sequence of nodes in S and $f:V{\backslash}S{\rightarrow}S$ for a given complete graph G=(V,E). In particular, there exist two costs, $c^V_{uv}$ and $c^D_{uv}$ for $(u,v){\in}E$, and the cost of triplet (S,${\pi}$,f) is defined as $\sum_{i=1}^{{\mid}S{\mid}}c^V_{{\pi}(i){\pi}(i+1)}+2$ ${\sum_{u{\in}V{\backslash}S}c^D_{uf(u)}$. This problem is motivated by the integrated routing of the vehicle and drone for urban delivery services. Since a well-known NP-complete TSP (Traveling Salesman Problem) is a special case of our problem, we cannot expect to have any polynomial-time algorithm unless P=NP. Furthermore, for practical purposes, we may not rely on time-exhaustive enumeration method such as branch-and-bound and branch-and-cut. This paper suggests the simple heuristic which is motivated by the MST (minimum spanning tree)-based approximation algorithm and neighborhood search heuristic for TSP.

GPU-based Parallel Ant Colony System for Traveling Salesman Problem

  • Rhee, Yunseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • In this paper, we design and implement a GPU-based parallel algorithm to effectively solve the traveling salesman problem through an ant color system. The repetition process of generating hundreds or thousands of tours simultaneously in TSP utilizes GPU's task-level parallelism, and the update process of pheromone trails data actively exploits data parallelism by 32x32 thread blocks. In particular, through simultaneous memory access of multiple threads, the coalesced accesses on continuous memory addresses and concurrent accesses on shared memory are supported. This experiment used 127 to 1002 city data provided by TSPLIB, and compared the performance of sequential and parallel algorithms by using Intel Core i9-9900K CPU and Nvidia Titan RTX system. Performance improvement by GPU parallelization shows speedup of about 10.13 to 11.37 times.

An efficient vehicle route search with time varying vehicle speed (속도 정보를 이용한 효율적 차량경로의 탐색)

  • Mun, Gi-Ju;Yang, Seung-Man
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.660-663
    • /
    • 2004
  • The vehicle routing problem with time-varying speed(VRPTVS) is difficult to handle with regular problem solving approaches. An approach by partitioning the service zone into three sub-zones to reduce computing time and vehicle traveling distance is suggested in this paper. To develop a partitioning algorithm for VRPTVS, all customer locations are divided into two sections such as morning zone and evening zone, excluding daytime zone. And then each service zone is calculated to find a possible number of delivery points and chosen by time window having more number of possible delivery points by considering customer location and varying speeds. A temporary complete route that can serve all target points is developed by this procedure and a pairwise exchange method is applied to reduce the traveling time.

  • PDF

On Finding an Optimal Departure Time in Time-Dependent Networks

  • Park, Chan-Kyoo;Lee, Sangwook;Park, Soondal
    • Management Science and Financial Engineering
    • /
    • v.10 no.1
    • /
    • pp.53-75
    • /
    • 2004
  • Most existing studies on time-dependent networks have been focused on finding a minimum delay path given a departure time at the origin. There, however, frequently happens a situation where users can select any departure time in a certain time interval and want to spend as little time as possible on traveling the networks. In that case. the delay spent on traveling networks depends on not only paths but also the actual departure time at the origin. In this paper, we propose a new problem in time-dependent networks whose objective is to find an optimal departure time given possible departure time interval at the origin. From the optimal departure time, we can obtain a path with minimum delay among all paths for possible departure times at the origin. In addition, we present an algorithm for finding an optimal departure time by enumerating trees which remain shortest path tree for a certain time interval.

A miniature inertia simulator using vector controlled induction motor (벡터제어 유도전동기를 이용한 축소형 관성 시뮬레이터)

  • Kim, Gil-Dong;Park, Young-Jae;Park, Hyun-Jun;Byun, Youn-Seop;Jang, Dong-Uook;Jho, Jeong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.413-415
    • /
    • 2001
  • A railroad vehicle(Light weight electric rail car, Urban railroad, High-speed railroad) need to construct propulsion- system capacity experiment equipment to test performance or to estimate confidence. Experiment equipment in interior have been used Flywheel which is equal to the same inertia as railroad straight moment. But mechanical inertia using flywheel don't change inertia and can't embody traveling-struggle which is similar to actual traveling-struggle. We propose the method to embody electric railroad load system with inertia using electric servo motor in order to get the characteristic of real vehicle load, and confirm this algorithm with simulation and experiment.

  • PDF

An Efficient Distributed Nearest Neighbor Heuristic for the Traveling Salesman Problem (외판원 문제를 위한 효율적인 분산 최근접 휴리스틱 알고리즘)

  • Kim, Jung-Sook;Lee, Hee-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10b
    • /
    • pp.1373-1376
    • /
    • 2000
  • 외판원 문제(Traveling Salesman Problem)는 주어진 n개의 도시들과 그 도시들간의 거리 비용이 주어졌을 매, 처음 출발도시에서부터 정확히 한 도시는 한 번씩만 방문하여 다시 출발도시로 돌아오면서 방문한 도시들을 연결하는 최소의 비용이 드는 경로를 찾는 문제로 최적해(optimal value)를 구하는 것은 전형적인 NP-완전 문제중의 하나이다[2,4,5, 8]. 따라서 이들의 수행시간을 줄이고자 하는 연구가 많이 진행된다. 본 논문에서는 외판원 문제의 최적의 해를 구하는데. 휴리스틱 알고리즘인 최근접 휴리스틱을 이용한다. 물론 수행 시간을 줄이고자 최적화 문제에서 좋은 성능을 보이는 유전 알고리즘 (Genetic Algorithm)으로 얻은 근사해(near optimal)를 초기 분기 함수로 사용하고, 근거리 통신망(Local Area Network)에 기반한 분산 처리 환경에서 여러 프로세서에 분산시켜 병렬성을 살린다.

  • PDF

Improved VRP & GA-TSP Model for Multi-Logistics Center (복수물류센터에 대한 VRP 및 GA-TSP의 개선모델개발)

  • Lee, Sang-Cheol;Yu, Jeong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1279-1288
    • /
    • 2007
  • A vehicle routing problem with time constraint is one of the must important problem in distribution and logistics. In practice, the service for a customer must start and finish within a given delivery time. This study is concerned about the development of a model to optimize vehicle routing problem under the multi-logistics center problem. And we used a two-step approach with an improved genetic algorithm. In step one, a sector clustering model is developed by transfer the multi-logistics center problem to a single logistics center problem which is more easy to be solved. In step two, we developed a GA-TSP model with an improved genetic algorithm which can search a optimize vehicle routing with given time constraints. As a result, we developed a Network VRP computer programs according to the proposed solution VRP used ActiveX and distributed object technology.

  • PDF