• Title/Summary/Keyword: Travel Frequency

Search Result 217, Processing Time 0.028 seconds

A Study on the Cutting and Vibratory Characteristics of the Eccentrically Rotating Cutter-Bar System (편심회전 봉형 절단장치의 절단 및 진동 특성에 관한 연구)

  • 송현갑;정창주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3885-3893
    • /
    • 1975
  • This work was intended to study the cutting graph and vibratory phenomina of a newly developed mower which may be suitable for mowing agricultural product having large and hard stems like corn and sugar beet. The system consists of cutter-bar having Curvilinear-translation motion, which attached to drag-crank mechanism. The motion of equation developed for experimental vibratory system which equipped with the cutter-bar system was established and the parameters defining the system's vibratory motion were experimentally determined. The optimum balancing weight for the cutter-bar am vibratory characteristics of the cutter-bar for various counterweight were analyzed to provide the design and operational conditions. The results of the study are summarized as follows; (1) The cutting graph by the new cutter-bar system depends upon the magnitude of ratio of forward travel(Vm) to crank speed (R$\omega$); The cutting pitch for Vm/R$\omega$ 1 (whole cycle cutting) and Vm/R$\omega$=2/$\pi$ (a half cycle cutting) are 2$\pi$ Vm and 4R, respectively. (2) The experimental vibratory system had been proved to function adequately so that it can be used in determining the required counterweight to minimize the vibratory motion of cutter-bar. (3) Experimentally determined counterweight to give the least vibratory motion was a little greater than the theoretically determined one. With the optimum counterweight it was possible to reduce up to about 87% of the amplitude without counterweight, which may be considered to be within safe operational region. (4) To avoid the actual operation of the cutter-bar at resonance which occured in low frequency ratio, it was considered that the rotational speed of the crank for a specific design of mower should be determined separately in connection with the desired cutting graph.

  • PDF

Pre-processing of load data of agricultural tractors during major field operations

  • Ryu, Myong-Jin;Kabir, Md. Shaha Nur;Choo, Youn-Kug;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Development of highly efficient and energy-saving tractors has been one of the issues in agricultural machinery. For design of such tractors, measurement and analysis of load on major power transmission parts of the tractors are the most important pre-requisite tasks. Objective of this study was to perform pre-processing procedures before effective analysis of load data of agricultural tractors (30, 75, and 82 kW) during major field operations such as plow tillage, rotary tillage, baling, bale wrapping, and to select the suitable pre-processing method for the analysis. A load measurement systems, equipped in the tractors, were consisted of strain-gauge, encoder, hydraulic pressure, and radar speed sensors to measure torque and rotational speed levels of transmission input shaft, PTO shaft, and driving axle shafts, pressure of the hydraulic inlet line, and travel speed, respectively. The entire sensor data were collected at a 200-Hz rate. Plow tillage, rotary tillage, baling, wrapping, and loader operations were selected as major field operations of agricultural tractors. Same or different farm works and driving levels were set differently for each of the load measuring experiment. Before load data analysis, pre-processing procedures such as outlier removal, low-pass filtering, and data division were performed. Data beyond the scope of the measuring range of the sensors and the operating range of the power transmission parts were removed. Considering engine and PTO rotational speeds, frequency components greater than 90, 60, and 60 Hz cut off frequencies were low-pass filtered for plow tillage, rotary tillage, and baler operations, respectively. Measured load data were divided into five parts: driving, working, implement up, implement down, and turning. Results of the study would provide useful information for load characteristics of tractors on major field operations.

Development of Error Compensation System and On the Machine Measurement System for Ultra-Precision Machine (초정밀가공기용 오차보상시스템 및 기상측정장치 개발)

  • 이대희;나혁민;오창진;김호상;민흥기;김민기;임경진;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.599-603
    • /
    • 2003
  • This paper present an error compensation system and On-Machine Measurement(OMM) system for improving the machining accuracy of ultra-precision lathe. The Fast-Tool-Servo(FTS) driven by a piezoelectric actuator is applied for error compensation system. The controller is implemented on the 32bit DSP for feedback control of piezoelectric actuator. The control system is designed to compensates three kinds of machining errors such as the straightness error of X-axis slide, the thermal growth error of the spindle. and the squareness between spindle and X-axis slide. OMM is preposed to measure the finished profile of workpiece on the machine-tool using capacitive sensor with highly accurate ruby tip probe guided by air bearing. The data acquisition system is linked to the CNC controller to get the position of each axis in real-time. Through the experiments, it is founded that the thermal growth of spindle and tile squareness error between spindle and X-axis slide influenced to machining error more than straightness error of X-axis slide in small travel length. These errors were simulated as a sinusoidal signal which has very low frequency and the FTS could compensate the signal less than 30 m. The implemented OMM system has been tested by measuring flat surface of 50 mm diameter and shows measurement error less than 400 mm

  • PDF

Improving wing aeroelastic characteristics using periodic design

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.353-369
    • /
    • 2017
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness, and inertia forces on a structure. In an aircraft, as the speed of the flow increases, there may be a point at which the structural damping is insufficient to damp out the motion which is increasing due to aerodynamic energy being added to the structure. This vibration can cause structural failure, and therefore considering flutter characteristics is an essential part of designing an aircraft. Scientists and engineers studied flutter and developed theories and mathematical tools to analyze the phenomenon. Strip theory aerodynamics, beam structural models, unsteady lifting surface methods (e.g., Doublet-Lattice) and finite element models expanded analysis capabilities. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. This may reduce the vibration level of the structure, and hence improve its dynamic performance. In this paper, for the first time, we analyze the flutter characteristics of a wing with a periodic change in its sandwich construction. The new technique preserves the external geometry of the wing structure and depends on changing the material of the sandwich core. The periodic analysis and the vibration response characteristics of the model are investigated using a finite element model for the wing. Previous studies investigating the dynamic bending response of a periodic sandwich beam in the absence of flow have shown promising results.

Scattering of a Kelvin Wave by a Cylindrical Island (원통형 섬에 의한 Kelvin 파의 산란)

  • Lee, Sang-Ho;Kim, Kuh
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.177-185
    • /
    • 1993
  • The theory for long wave scattering (Proudman, 1914: Longuet-Higgins, 1970) is applied to a tidal-frequency Kelvin wave propagating around a small cylindrical island in a shelf sea of uniform depth. The theory includes the effects of bottom friction on wave propagation. The theoretical analysis of the Kelvin wave around the island. this amplitude change results in a uniform amplitude of the total wave along the circumference of the island in an inviscid fluid, and the dynamic cause of this is explained in terms of Coriolis effects. Bottom friction attenuates the amplitude of the total wave from the frontal side of the island to the leeward side, but the amplitude variation along the coast becomes symmetric to the line connecting both idea. The phase of the scattered wave contributes to more rapid travel of the total wave in the front and leeward side than farther offshore. The effects of bottom friction on the wave phase around the island are negligible.

  • PDF

System Identification Analysis on Soil-Structure Interaction Using Field Data (현장자료를 사용한 지반-구조물 상호작용에 대한 경험적 연구)

  • Kim Seung Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.37-46
    • /
    • 2005
  • In the field of earthquake engineering, recent improvements in many areas, such as seismological source modeling, analysis of travel path effects, and characterization of local site effects on strong shaking, have led to significant advances in both code-based and more advanced procedures for evaluating earthquake ground motions. A missing link, however, is empirically verified design procedures fur assessing the effects of soil-structure interaction (SSI). Available Soil-Structure Interaction (SSI) analysis techniques range from simple substructure-type procedures to relatively sophisticated finite element procedures. The most common substructure approach for foundation-soil interaction is to use a frequency-dependent and complex-valued impedance function. This study uniquely evaluates impedance functions for two well-instrumented sites w significant inertial SSI effects using a system Identification technique. The system identification analysis results are then compared to predictions from a simple theoretical model to gain insight into the inertial interaction effect in the subject sites.

The Changes of Traveller's Sleep-Wake Cycles by Jet Lag (비행시차(jet lag)에 의한 여행객의 수면-각성 주기의 변화)

  • Lee, Seung-Hwan;Kim, Leen;Sub, Kwang-Yoon
    • Sleep Medicine and Psychophysiology
    • /
    • v.2 no.2
    • /
    • pp.146-155
    • /
    • 1995
  • Jet lag can be defined as the cumulative physiological and psychological effects of rapid air travel across multiple time zone. The consequences of jet lag include fatigue, general malaise, sleep disturbances, and reductions of cognitive and psychomotor performance, all of which have been documented in experimental biological and air crew personnel studies. Thus authors tried to study the jet lag of natural travellers by modified self reporting sleep log. Total 61 healthy travellers was studied for 3 days before and 7 days after jet-flights across seven to ten time zone. The eastbound travelling group was 38 persons, aged 19 -70 and westbound travelling group was 23 persons, aged 13 - 69. Sleep onset time, wake-up time, sleep latency, awakening frequency on night sleep, awakening duration on night sleep, sleepiness at wake-up and nap length were evaluated. Our results suggested that the 7 to 10 time zone shift gave significant influence to traveller's sleep-wake cycles. The date which subjective physical condition was recovered on was $5.16{\pm}1.50$ day after arrivals for eastbound, while for westbound, $4.91{\pm}1.62$ day. In eastbound travelling, sleep onset time became later than baselines and could not recover until 7th day. But in westbound, it became earlier than baseline and could recover until 6th day. The mean score of 24-hour sleepiness was greater in eastboumd than westbound. Therefore the eastbound travelling caused more sleep-wake cycle disturbance and daytime dysfunction than westbound travelling. In other parameters, there was no definite difference between east and westbound. From our results, it was suggested that the symptom severity of jet lag was dependent on the travelling direction. To demonstrate more definite evidence, large sized data collections and comparision by age difference were needed.

  • PDF

Bandwidth Requirement Estimation Method for Future Wireless Railway Communication Systems (차세대 철도통합무선망을 위한 주파수 소요량 계산방법)

  • Jeong, Minwoo;Yoon, Hyungoo;Park, Duk-Kyu;Kim, Kyung-Hee;Lee, Sukjin
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.540-550
    • /
    • 2013
  • The Future Wireless Railway Communication System(FWRCS) has attracted attention for the various advantages of such a system like efficient management, precise periodicity of operation and speedy travel. Related to it, the area of bandwidth requirement estimation for the FWRCS is being researched actively because there is a great need for accurate bandwidth distribution. In this paper, sophisticated bandwidth requirement estimation method for FWRCS is proposed by modifying ITU-R M.1390. With this method, the expected frequency requirements for the present, for five years from now, and for 10 years from now can be calculated by applying the data gathered from the actual field.

Waveform Estimation from Seismic Records (탄성파 기록으로부터 기본 파형 추출에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.3
    • /
    • pp.183-187
    • /
    • 1998
  • Seismic waveform estimation is based on the assumption that the seismic trace tying a well is one dimensional convolution of the propagating seismic waveform and the reflectivity series derived from well logs (sonic and density). With this assumption, the waveform embedded in a seismic trace can be estimated using a Wiener match filter. In this paper, I experimented a preprocessing procedure that applies both on the seismic trace and on the reflectivity series. The procedure is based on the assumption that the travel time can be estimated better from the seismic trace and that the instantaneous reflectivity values can be measured better on the well log. Thus the procedure is, 1) start-time adjustment and dynamic differential stretches are applied on the sonic log, and 2) seismic amplitudes are balanced such that the low frequency part of the seismic are matched to that of the reflectivities derived from well logs.

  • PDF

A Comparative Study on the Passenger's Time Saving Effects of Urban Express Railway Service

  • Kim Gyeng-Chul;Chang Byung-Hoon
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.09a
    • /
    • pp.3-16
    • /
    • 1998
  • The goal of the transportation policy of Seoul is to increase the ridership of the subway system by constructing the public transportation network, the subway system. To accomplish this goal, the city of Seoul has been constructing the Metropolitan Subway System. Currently, seven subway lines which connect major areas in Seoul are operating. However, the ridership of subway system was not increased as much as we expected, even though more subway lines have been implemented. It seems that although the length of the subway line was extended, the current way of the subway operation that trains stop at every station cannot satisfy the passenger's need. Thus, we should try to increase the demand by providing quicker services and diversifying the subway operations; changing the point of view is required. This paper introduces the distinctive features of the express subway system and the model for analysing the effects of that system. This paper also presents the results for the feasibility study of the express subway system on the 5th Subway Line and Kyong-Eue Railway Line. Based on the results of the case studies, We can conclude as : First, the express system reduces a total travel time by about $13\%$; in particular, the Kyong-Eue Line is more effective than the subway Line ${\sharp}5$. Second, the shorter headway of express trains increases the time saving effects on subway system although it requests more waiting time to low-speed train passengers. When the service frequency is increased from 5 to 7.5 times/hour, total saved time ratio is about $10\%$ in the Subway Line ${\sharp}5$ and about $18\%$ in the Kyong-Eue Line.

  • PDF