• Title/Summary/Keyword: Trapezius activity

Search Result 218, Processing Time 0.025 seconds

A Comparison of Shoulder Muscle Activities on Sitting Posture and Shoulder Angle

  • Park, Gyeong-ju;Park, Sun-young;Lee, Eun-jae;Jeong, Su-hyeon;Kim, Su-jin
    • Physical Therapy Korea
    • /
    • v.25 no.1
    • /
    • pp.62-70
    • /
    • 2018
  • Background: Sitting posture influences movements of scapulothoracic and glenohumeral joints and changes the shoulder muscle activities. The development and maintenance of correct sitting posture is important for the fundamental treatment of shoulder pain during rehabilitation. Objects: The purpose of this study was to investigate the effects of the sitting postures and the shoulder movements on shoulder muscle activities for both male and female. Methods: Twenty-eight subjects without shoulder-related diseases participated in this experiment. The subjects had randomly adopted three different sitting postures (upright posture, preferred posture, maximum slouched posture) and shoulder flexion angles in scapular plane ($30^{\circ}$, $90^{\circ}$, $120^{\circ}$). Surface electrodes were collected from upper trapezius (UT), anterior deltoid (AD), and posterior deltoid (PD) and the active shoulder range of motion was measured in each sitting posture and shoulder flexion angle. Results: The active range of motions of the shoulder external rotation and the flexion in the scapular plane decreased from the upright posture to the maximum slouched posture (p<.05, mixed-effect linear regression with random intercept, Tukey post-hoc analysis). All muscles showed the highest EMG activities at $120^{\circ}$ shoulder flexion with the maximum slouched posture and did not show the gender differences. Conclusion: Increased shoulder muscle activities may become the potential risk factor for the shoulder impairment and pain if people continuously maintain the maximum slouched posture. Therefore, an upright position is necessary during shoulder exercises, as well as in activities of daily living, including motions involving lifting the arms.

Development and Evaluation of Smart Jacket with Embedded Wearable Device (웨어러블 디바이스를 이용한 기능성 스마트 재킷 개발 및 평가)

  • Lee, Jeong-Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.3
    • /
    • pp.395-407
    • /
    • 2008
  • As global interest in clothing spreads over the smart clothing which arouses high added-value in the apparel industry, this study is to develop a smart jacket with an electrically-vibrating device maintaining excellent appearance and comfort. The vibrating device has a massage function that could relieve muscle pain near shoulders and neck. The purposes of this research are to develop jacket pattern for men in their thirties considering body shapes and fashion trend, to develop a wearable device that is composed of motor and controller and integrate it into a jacket, and to assess the external appearance and functional satisfaction of the smart jacket through the wearing test. The results are as follows: 1. In order to develope an appropriate jacket pattern for men in their thirties, several patterns were assessed for their fitting comfort. The final pattern was completed after making alterations some parts, and showed high satisfaction as 3.6(on a five-point scale) in all categories. 2. A vibrating device was developed by connecting motor, controller, battery and switch. Developing this device, focus was maximizing the strength of motor and minimizing the heat generated from motor and controller. Snaps were placed between inner and outer cloth of jacket so that the vibrating device could be easily attachable and detachable. The motor was located around Trapezius where muscles often get stiff. A switch was designed to be used in selecting the modes of Strong, Weak, and Cross Tapping. 3. The wearing test was conducted to examine outer appearance, comfort for motion, and functionality of the smart jacket. The results of assessing outer appearance showed that the location for attaching the vibrating device was not noticeable but looked natural, and there is almost no change in outer appearance when the vibrating device operates. The result of assessing comfort of action revealed that wearer's satisfaction was high in all categories about activity, wearer's comfort, etc. The result also showed that wear's satisfaction for effects of vibrating massage, easiness in using the device, heat generation was not less than 3.5 in all categories except a category about noise.

The Effects of Sling and Vibrator Application of Knee Push-Up Plus Motion on Trunk Muscle Activities in Healthy Subjects (무릎 푸시업 플러스 동작의 슬링과 진동기 적용이 정상인의 체간 근육 근활성도 변화에 미치는 영향)

  • Kim, You-Sin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The purpose of this study was to investigate the effects of sling and vibrator application of knee push-up plus motion on trunk muscle activities. Ten healthy adult males(age, 23.00±0.45 years; height, 176.60±1.64 cm; body mass, 67.50±1.22 kg; and BMI, 21.65±0.34 kg/㎡) were participated in this study as subjects. Three types' knee push-up plus motions were performed(basic knee push-up plus motion, BKPP; knee push-up plus motion with sling, KPPS; knee push-up plus motion with vibration, KPPV). We measured the right side's trunk muscle activities of the upper trapezius(UT), pectoralis major(PM), serratus anterior(SA), rectus abdominis(RA), and external oblique(EO). The research findings were as follows. UT, PM, SA, RA, and EO muscle activities were greatest during KPPV(p<.001). These results are expected to serve as reference materials for knee push-up plus motion applications in training programs for trunk muscle strengthening.

It is Time to Have Rest: How do Break Types Affect Muscular Activity and Perceived Discomfort During Prolonged Sitting Work

  • Ding, Yi;Cao, Yaqin;Duffy, Vincent G.;Zhang, Xuefeng
    • Safety and Health at Work
    • /
    • v.11 no.2
    • /
    • pp.207-214
    • /
    • 2020
  • Background: Prolonged sitting at work can lead to adverse health outcomes. The health risk of office workers is an increasing concern for the society and industry, with prolonged sitting work becoming more prevalent. Objective: This study aimed to explore the variation in muscle activities during prolonged sitting work and found out when and how to take a break to mitigate the risk of muscle symptoms. Methods: A preliminary survey was conducted to find out the prevalence of muscle discomfort in sedentary work. Firstly, a 2-h sedentary computer work was designed based on the preliminary study to investigate the variation in muscle activities. Twenty-four participants took part in the electromyography (EMG) measurement study. The EMG variations in the trapezius muscle and latissimus dorsi were investigated. Then the intervention time was determined based on the EMG measurement study. Secondly, 48 participants were divided into six groups to compare the effectiveness of every break type (passive break, active break of changing their posture, and stand and stretch their body with 5 or 10 mins). Finally, data consisting of EMG amplitudes and spectra and subjective assessment of discomfort were analyzed. Results: In the EMG experiment, results from the joint analysis of the spectral and amplitude method showed muscle fatigue after about 40 mins of sedentary work. In the intervention experiment, the results showed that standing and stretching for 5 mins was the most effective break type, and this type of break could keep the muscles' state at a recovery level for about 30-45 mins. Conclusions: This study offers the possibility of being applied to office workers and provides preliminary data support and theoretical exploration for a follow-up early muscle fatigue detection system.

The Differences of Shoulder Muscle Activity Onset Time according to Body Tilting Angle in Push-up Exercise (Push-up 동작 시 신체기울기에 따른 견관절 주변근의 수축 개시시간 변화)

  • Cho, Yong-Ho;Kim, Sung-Ok;Choi, Jin-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.2
    • /
    • pp.55-61
    • /
    • 2015
  • PURPOSE: The purpose of this study was to investigate recruiting order and onset time around shoulder muscle during the push-up according to the body tilting angle. METHODS: Twenty healthy young adult subjects were recruited for this study. They had no neurological and musculoskeletal disease. We used the sEMG for recording onset time of shoulder muscles. Shoulder Muscles were anterior deltoid(AD), posterior deltoid(PD), pectoralis major(PM), upper trapezius(UT). Body tilting angle were measured at 0 degree, 30 degree and 60 degree by using tilting table. Muscles contraction onset time were set by the push-up performed 3 times respectively. Mean of 3 measurements were used. And initiate onset time was decided by the Mean ${\pm}2$ SD in the threshold, more than 25ms. RESULTS: There were significant difference at 0 degree, 30 degree and 60 degree(p<.05). Muscles onset time were same order at 0 degree, 30 degree. UT occurred first of all contraction at 0 degree and 30 degree. And then contracted AD, PD, PM. But, at 60 degree, AD was the first contraction, and PM, UT, PD. CONCLUSION: Muscle recruitment order and onset time according to the body tilting was shown the difference when you do push-up. Therefore, this result, shoulder muscle recruitment pattern of according to the body tilting is different and it has to make effective shoulder exercise program.

A Comparison Analysis of EMG on Arm and Trunk Muscle Between Elastic and Inelastic Bar During The Overhead Press Exercise (오버헤드 운동 중 탄성 바와 비탄성 바의 팔과 몸통 근육에 대한 근전도 비교 분석)

  • Il Bong, Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.4
    • /
    • pp.128-133
    • /
    • 2022
  • Objective: This study was executed to compare and analyze shoulder muscle activation while using an inelastic bar and elastic bar during overhead press exercise. The stability and coordination of shoulder joints will be investigated by measuring and analyzing the EMG of the upper and lower arm muscles. Method: A total of 20 university male students were recruited by dividing into 2 groups; 10 elastic bar participants (age: 20.17 ± 0.41 yrs, height: 174.31 ± 3.34 cm, weight: 74.68 ± 5.65 kg) and 10 inelastic bar participants (age: 20.09 ± 0.23 yrs, height: 173.53 ± 4.11 cm, weight: 75.32 ± 3.31 kg) participated in this study. Results: The EMG analysis results of the four muscles measured in this study showed that there was no difference between the left and right muscles between the groups in Upper Trapezius muscle. In Deltoid, Infraspinatus, and Rectus Abdominis muscles, the elastic bar group was significantly higher than the inelastic bar group between groups, and there was no difference between left and right. Conclusion: Among the four muscles measured in this study, there was no difference between left and right in Deltoid, Infraspinatus, and Rectus Abdominis, but the elastic bar showed significantly higher muscle activity than the inelastic bar. Therefore, it was found that the elastic bar increases muscle activation during exercise than the inelastic bar, and in particular, it further increases muscle activation of the arms and torso, and exercise using the elastic bar can increase neuromuscular stabilization.

Ergonomic Design of Necklace Type Wearable Device

  • Lee, Jinsil;Ban, Kimin;Choe, Jaeho;Jung, Eui S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.281-292
    • /
    • 2017
  • Objective: This study aims to identify important physical design variables in designing a necklace type wearable device, and to present design guidelines to maximize comfort that a user feels upon wearing the device. Background: Interests in fitness culture and personal health are on the rise recently. In such a situation, demand for necklace type wearable devices is projected to increase a lot, as the devices enable users to use their hands freely and to enjoy various contents through connection with mobile devices. However, the necklace type wearable device's comfort was assessed to have the lowest comfort in a running situation, where human body moves up and down and left and right more than other devices wearable on other human body parts. Therefore, the usability of a necklace type wearable device was low. In this regard, studies on identification of the variables affecting user comfort upon wearing a necklace type wearable device and on physical design direction maximizing comfort and usability are needed. Method: A pretest and a main test were carried out to draw the direction of necklace type wearable device design. In the pretest, wearing evaluation on the diverse types of devices released in the market was conducted to draw physical design variables of the devices affecting comfort. Furthermore, variables significantly affecting the comfort of a device were selected through an analysis of variance (ANOVA). In the main test, anthropometry was performed, and information on anthropometric items corresponding to the design variables selected in the pretest was acquired. Based on the pretest results and the anthropometric information in the main test, the present study produced design guidelines maximizing the comfort of a necklace type wearable device with regard to major design variables upon dynamic tasks. Results: According to the pretest results, the variables having effects on comfort were the angle of side points, width, and height. Due to interactions between variables, those need to be simultaneously considered upon designing a device. Upon dynamic tasks, the angle of side points and width of a device was designed to be smaller than mean angle of the trapezius muscle and neck width, and thus attachment to human body was high. As height was designed to be larger than mean neck front and rear point width, comfort was higher due to feeling of stability. Conclusion: Because user sensitivity to comfort was high at human body's inflection points, a device needs to be designed for users not to feel high pressure on specific body parts with the device fitting human body shape well. A design considering user's situation is also required in further studies.

Gait Phases Detection from EMG and FSR Signals in Walkingamong Children (근전도와 저항 센서를 이용한 보행 단계 감지)

  • Jang, Eun-Hye;Chi, Su-Young;Lee, Jae-Yeon;Cho, Young-Jo;Chun, Byung-Tae
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.207-214
    • /
    • 2010
  • The aim of this study was to investigate upper and lower limb muscle activity using EMG(electromyogram) sensors while walking and identify normal gait pattern using FSR(force sensing resistor) sensor. Fifteen college students participated in this study and their EMG and FSR signal were measured during stopping and walking trials. EMG signals from upper(pectoralis major and trapezius) and lower limbs(rectus femoris, biceps femoris, vastus medialis, vastus lateralis, semimembranosus, semitendinosus, soleus, peroneus longus, gastrocnemius medialis, and gastrocnemius lateralis) were obtained using the surface electrodes. FSR measured pressures on 8 areas of the sole of the foot during walking. EMG results showed that all muscle activities except for vastus lateralis and semimembranosus during walking had higher amplitudes than stopping. Additionally, muscle activities associated with stance and swing phase during walking were identified. Results on FSR showed that stance and swing phases were detected by FSR signals during a gait cycle. Eight gait phases-initial contact, loading response, mid stance, terminal stance, pre swing, initial swing, mid swing, and terminal swing- were classified.

  • PDF