• Title/Summary/Keyword: Transverse tearing

Search Result 4, Processing Time 0.022 seconds

Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Axial and Bending Loads During Transportation

  • Lee, Seong-Ki;Lee, Dong-Hyo;Park, Joon-Kyoo;Kim, Jae-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.491-501
    • /
    • 2021
  • This paper aims to evaluate the mechanical integrity for Spent Nuclear Fuel (SNF) cladding under lateral loads during transportation. The evaluation process requires a conservative consideration of the degradation conditions of SNF cladding, especially the hydride effect, which reduces the ductility of the cladding. The dynamic forces occurring during the drop event are pinch force, axial force and bending moment. Among those forces, axial force and bending moment can induce transverse tearing of cladding. Our assessment of 14 × 14 PWR SNF was performed using finite element analysis considering SNF characteristics. We also considered the probabilistic procedures with a Monte Carlo method and a reliability evaluation. The evaluation results revealed that there was no probability of damage under normal conditions, and that under accident conditions the probability was small for transverse failure mode.

The Shock and Fracture Analysis of Ship Structure Subject to Underwater Shock Loading (수중충격하중을 받는 선체구조의 충격 및 파손 해석)

  • Kie-Tae Chung;Kyung-Su Kim;Young-Bok Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.118-131
    • /
    • 1995
  • The shock fracture analysis for the structures of navy vessels subject to underwater explosions or of high speed vessels frequently subject to impact loads has been carried out in two steps such as the global or macro analysis and the fine or micro analysis. In the macro analysis, Doubly Asymptotic Approximation(DAA) has been applied. The three main failure modes of structure members subject to strong shock loading are late time fracture mode such as plastic large deformation mainly due to dynamic plastic buckling, and the early time fracture mode such as tensile tearing failure or transverse shear failure. In this paper, the tensile tearing failure mode is numerically analyzed for the micro analysis by calculating the dynamic stress intensity factor $K_I(t)$, which shows the relation between stress wave and crack propagation on the longitudinal stiffener of the model. Especially, in calculating this factor, the numerical caustic method developed from shadow optical method of caustic well known as experimental method is used. The fully submerged vessel is adopted for the macro analysis at first, of which the longitudinal stiffener, subject to early shock pressure time history calculated in macro analysis, is adopted for the micro analysis.

  • PDF

Fatigue Crack Growth Behavior of a Continuous Alumina Fiber Reinforced Metal Matrix Composite Materials (알루미나 장섬유 강화 복합금속재의 피로균열성장거동)

  • Doo Hwan, Kim;Lavernia, E.J.;Earthman, J.C.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 1991
  • The effects of heat treatment on fatigue crack growth behavior were studied in continuously reinfored, magnesium-based composite (FP/ZE41A). Following an earlier TEM investigation, specimens were thermally aged to modify the interfacial zone between the alumina fibers and mg alloy matrix. The fatigue crack growth experiments were conducted with specimens having the fiber orientation normal to the crack growth direction(longitudinal) and also specimens with the fibers oriented parallel to the crack growth direction(transverse). A comparision of the fatigue crack growth behavior indicates that aged longitudinal specimens are more resistant to fatigue crack growth than as-fabricated longitudinal specimens. Conversely, as-fabricated transverse specimens are more resistant to fatigue crack growth than aged transverse specimens. SEM observations of fiber pullout and ductile tearing on the fatigue fracture surfaces indicate that the aging weakens the strength of the fiber/matrix interface, giving rise to the observed fatigue crack growth behavior.

  • PDF

Combined Effects of High Pressure and Heat on Shear Value and Histological Characteristics of Bovine Skeletal Muscle

  • Rusman, H.;Gerelt, B.;Yamamoto, S.;Nishiumi, T.;Suzuki, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.994-1001
    • /
    • 2007
  • Changes in shear force value, transverse sections, myofibrils and intramuscular connective tissue of bovine skeletal muscle exposed to the combination of high-pressure up to 400 MPa and heat (30 and $60^{\circ}C$) were studied. The shear force value decreased by pressure-heat treatment up to 200 MPa at 30 and $60^{\circ}C$, and then slightly increased over 200 MPa at $30^{\circ}C$. Shear force values of treated muscles were lower than those of untreated ones. Gaps between muscle fibers in the untreated muscle were a little clear, and then they became very clear in the treated muscles up to 200 MPa at 30 and $60^{\circ}C$. However, the gaps reduced significantly over 200 MPa at $30^{\circ}C$. The remarkable rupture of I-band and loss of M-line materials progressed in the myofibrils with increasing pressure applied. However, degradation and loss of the Z-line in myofibrils observed in the muscle treated at $60^{\circ}C$ was not apparent in the muscle treated at $30^{\circ}C$. The length of the sarcomere initially contracted by pressure-heat treatment of 100 MPa at $30^{\circ}C$ seemed to have recovered with increase of the pressure up to 400 MPa. In the muscle treated at $60^{\circ}C$, the length of sarcomere gradually decreased with increase of the pressure up to 400 MPa. In the treated muscles, changes in the honeycomb-like structure of endomysium were observed and accelerated with increase of the pressure. A wavy appearance clearly observed at the inside surface of endomysium in the untreated muscles gradually decreased in the treated muscles with increase of the pressure. Tearing of the membrane was observed in the muscles treated over 150 MPa at $30^{\circ}C$, as observed in the sample pressurized at 100 MPa at $60^{\circ}C$. The roughening, disruption and fraying of the membrane were observed over 200 MPa at $60^{\circ}C$. From the results obtained, the combination of high-pressure and heat treatments seems to be effective to tenderize tough meat. The shear force value may have some relationship with deformation of intramuscular connective tissue and myofibrils.