• Title/Summary/Keyword: Transverse plane angle

Search Result 60, Processing Time 0.019 seconds

Mandibular midline osteotomy for correction of bimaxillary transverse discrepancy: a technical note

  • Mrunalini Ramanathan;Rie Sonoyama-Osako;Yukiho Shimamura;Taro Okui;Takahiro Kanno
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.3
    • /
    • pp.107-113
    • /
    • 2023
  • Bimaxillary transverse width discrepancies are commonly encountered among patients with dentofacial deformities. Skeletal discrepancies should be diagnosed and managed appropriately with possible surgical corrections. Transverse width deficiencies can present in varieties of combinations involving the maxilla and mandible. We observed that in a significant proportion of cases, the maxilla is normal, and the mandible showed deficiency in the transverse dimension after pre-surgical orthodontics. We designed novel osteotomy techniques to enhance mandibular transverse width correction, as well as simultaneous genioplasty. Chin repositioning along any plane is applicable concomitant with mandibular midline arch widening. When there is a requirement for larger widening, gonial angle reduction may be necessary. This technical note focuses on key points in management of patients with transversely deficient mandible and the factors affecting the outcome and stability. Further research on the maximum amount of stable widening will be conducted. We believe that developing evidence-based additional modifications to existing conventional surgical procedures can aid precise correction of complex dentofacial deformities.

Analysis of laminated composite plates based on different shear deformation plate theories

  • Tanzadeh, Hojat;Amoushahi, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.247-269
    • /
    • 2020
  • A finite strip formulation was developed for buckling and free vibration analysis of laminated composite plates based on different shear deformation plate theories. The different shear deformation theories such as Zigzag higher order, Refined Plate Theory (RPT) and other higher order plate theories by variation of transverse shear strains through plate thickness in the parabolic form, sine and exponential were adopted here. The two loaded opposite edges of the plate were assumed to be simply supported and remaining edges were assumed to have arbitrary boundary conditions. The polynomial shape functions are applied to assess the in-plane and out-of-plane deflection and rotation of the normal cross-section of plates in the transverse direction. The finite strip procedure based on the virtual work principle was applied to derive the stiffness, geometric and mass matrices. Numerical results were obtained based on various shear deformation plate theories to verify the proposed formulation. The effects of length to thickness ratios, modulus ratios, boundary conditions, the number of layers and fiber orientation of cross-ply and angle-ply laminates were determined. The additional results on the same effects in the interaction of biaxial in-plane loadings on the critical buckling load were determined as well.

Effects of stiffness on reflection and transmission of micropolar thermoelastic waves at the interface between an elastic and micropolar generalized thermoelastic solid

  • Kumar, Rajneesh;Sharma, Nidhi;Ram, Paras
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.117-135
    • /
    • 2009
  • The reflection and transmission of micropolar thermoelastic plane waves at the interface between an elastic solid and micropolar generalized thermoelastic solid is discussed. The interface boundary conditions obtained contain interface stiffness (normal stiffness and transverse stiffness). The expressions for the reflection and transmission coefficients which are the ratios of the amplitudes of reflected and transmitted waves to the amplitude of incident waves are obtained for normal force stiffness, transverse force stiffness and welded contact. Numerical calculations have been performed for amplitude ratios of various reflected and transmitted waves. The variations of amplitude ratios with angle of incident wave have been depicted graphically. It is found that the amplitude ratios of reflected and transmitted waves are affected by the stiffness, micropolarity and thermal distribution of the media.

Resonant Transmission through Slits in a Cavity inside a Thin Conducting Plane

  • Lee, Jong-Ig;Cho, Young-Ki
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.127-131
    • /
    • 2010
  • In this paper, the problem of electromagnetic transmission via slits in a cavity inside a conducting screen of finite thickness has been considered in the case that the transverse electric(to the slit axis) polarized plane wave is incident on a slit. The problem is solved numerically by the method of moments and the results are compared with those obtained from an equivalent circuit suitable for a case in which the slit width is infinite and the structure is modified to the two partially overlapped conducting planes. It is observed that when the cavity is resonated, the effective slit width reaches its maximum value of $1/\pi$ wavelengths, irrespective of the actual slit width and the incidence angle. When the thickness of the conducting plane is much smaller than the wavelength, the numerical results for the effective slit width(or transmission width) agree well with those obtained from the equivalent circuit, even though the slit is as narrow as the thickness of the conducting plane.

Plane harmonic waves in fractional orthotropic magneto-thermoelastic solid with rotation and two-temperature

  • Himanshi;Parveen Lata
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.103-125
    • /
    • 2023
  • The present research is focused on the study of plane harmonic waves in a two-dimensional orthotropic magneto-thermoelastic media with fractional order theory of generalized thermoelasticity in the light of two-temperature and rotation due to time harmonic sources. Here, we studied three types of waves namely quasi-longitudinal (QL), quasi-transverse (QTS) and quasi thermal (QT) waves. The variations in the wave properties such as phase velocity, attenuation coefficient and specific loss have been noticed with respect to frequency for the reflected waves. Further the value of amplitude ratios, energy ratios and penetration depth are computed numerically with respect to angle of incidence. The numerical simulated results are presented graphically to show the effect of fractional parameter based on its conductivity (0<α<1 for weak, α=1 for normal, 1<α≤2 for strong conductivity) on all the components.

Effect of Sagittal Pelvic Tilt on Kinematic Changes of Hip and Knee Joint During Sit-to-Stand (일어서기 동작 시 시상면 골반 기울임이 엉덩관절과 무릎관절의 운동형상학에 미치는 영향)

  • Lim, In-Hyuk;Choi, Bo-Ram;Kim, Hyun-Sook
    • Physical Therapy Korea
    • /
    • v.18 no.3
    • /
    • pp.26-37
    • /
    • 2011
  • Although there have been various studies related to the body's movement from a sitting to a standing position (sit-to-stand task), there is limited information on the kinematic changes on the frontal and transverse planes. The purpose of this study was to ascertain how pelvic tilt affects kinematic changes in the frontal and transverse planes in the hip and knee joints during a sit-to-stand task. For this study, 33 healthy participants (13 female) were recruited. Each participant rose from a sitting to a standing posture at his or her preferred speed for each of three different pelvic tilt trials (anterior, posterior, and neutral), and the measured angles were analyzed using a 3-D motion analysis system. A one-way repeated measure analysis of variance was performed with Bonferroni's post hoc test. In addition, an independent t-test was carried out to determine the sex differences in hip and knee joint kinematic changes during the sit-to-stand tasks. The results were as follows: 1) The hip and knee joint angle in the frontal and transverse planes showed a significant difference between the different pelvic tilt postures during sitting in the pre-buttock lift-off phase (pre-LO) (p<.05). Compared to the posterior pelvic tilt posture, the anterior pelvic tilt posture involved significantly greater hip joint adduction and internal rotation, knee joint adduction, and reduced internal rotation of the knee joint. 2) Sex differences were found with significant differences for males in the initial and maximal angles in the frontal plane of the hip and knee joint (p<.05). Females had a significantly smaller initial abduction angle of the hip joint and a significantly greater maximal angle of the hip adduction joint. These results suggest that selecting a sit-to-stand exercise for pelvic tilt posture should be considered to control abnormal movement in the lower extremities.

THE POSITIONAL RELATIONSHIP BETWEEN THE MANDIBLE AND THE HYOID BONE IN MANDIBULAR PROTRUSION AFTER ORTHOGNATHIC SURGERY EVALUATED WITH 3-D CT (3-D CT를 이용한 악교정술 전후의 하악과 설골의 위치에 관한 연구)

  • Lee, Sang-Han;Nam, Jeong-Hun;Jung, Chang-Wook;Kwon, Tae-Geon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.3
    • /
    • pp.173-181
    • /
    • 2003
  • Purpose : This study was intended to evaluate the positional relationship between the hyoid bone and the mandible in patients with mandibular protrusion after mandibular set-back surgery by means of 3D-CT. Materials and methods : Preoperative(3 weeks before) and postoperative (6 weeks after) 3D-CT & cephalogram were taken on 32 patients(12 male, 20 female, mean age of 23.2) treated by bilateral sagittal split osteotomy with rigid fixation. The angular measurement on 3D-CT basilar view were deviation of Me & H, long axis angle of left & right cornu majus. The lineal measurement on 3D-CT basilar view were composed of intercondylar line and coordinates(x,y) of Me & H. The angular & lineal measurement of lateral cephalogram were composed of mandibular plane angle, SNA, SNB, ANB, FH-NA & FH-NB, and coordinates(x,y) of B, Pog, Me & H, PAS, Lpw, MPH and IAS. On the frontal cephalogram, deviation of Me were evaluated. Results : The mean mandibular set-back was 8.0mm horizontally and mandibular plane angle was slightly increased. The hyoid bone was displaced postero-inferiorly, the distance between MP(mandibular plane) and H(hyoid bone) was increased and the posterior airway space values (PAS, Lpw, IAS) were decreased. The coordinates Me(x,y), H(x,y) and deviation angle Me'& H' were revealed the strong positive correlation. Conclusion : The results revealed that the horizontal, vertical and transverse relationship of the mandibular and the hyoid bone movements were significantly correlated in patients performed mandibular set-back surgery.

Shear Strength of Concrete Members without Transverse Steel (횡보강근이 없는 콘크리트 부재의 전단강도)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.57-66
    • /
    • 2000
  • The truss analogy for the analysis of beam-columns subjected of shear and flexure is limited by the contribution of transverse and longitudinal steel and diagonal concrete compression struts. However, it should be noted that even though the behavior of reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they are not perfect trusses but still structural elements with a measure of continuity provided by a diagonal tension field. The mere notion of compression field denotes that there should be some tension field coexisting perpendicularly to it. The compression field is assumed to form parallel to the crack plane that forms under combined flexure and shear. Therefore, the concrete tension field may be defined as a mechanism existing across the crack and resisting crack opening. In this paper, the effect of concrete tensile properties on the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss two-point truss model. The theoretical predictions are validated against the experimental observations. Although the agreement is not perfect, the comparison shows the correct trend in degradation as the inelasticity increases.

Evaluation of Effective Section Area of Shear Steel in Reinforced Concrete Circular Columns (철근콘크리트 원형기둥의 전단철근 유효단면적 평가)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.81-88
    • /
    • 1999
  • In order to properly evaluate the shear strength of reinforced concrete circular columns due to the transverse shear reinforcement, the average of fractions of forces generated along the circular transverse hoops across the shear failure plane in the loading direction is calculated. For this, the center-to-center diameter of circular transverse hoops. spacing and the crack angle measured to the column longitudinal axis are considered. Using these variables, an equation representing the effective section area of circular transverse shear steel is proposed. The study result shows that the constant parameter. used for the calculation of the effective section area of circular hoops over the last 10 years, should not universally be applied any more. The use of the constant parameter may not seriously do harm to the evaluation of shear strength for circular columns with non-seismically designed transverse hoop reinforcement, since it gives slightly conservative results. However. for well-confined circular columns with close spacing or circular steel jacketing. it gives about 20% overestimation of the shear capacity contributed by the transverse hoop steel.

Three Dimensional Measurement of Ideal Trajectory of Pedicle Screws of Subaxial Cervical Spine Using the Algorithm Could Be Applied for Robotic Screw Insertion

  • Huh, Jisoon;Hyun, Jae Hwan;Park, Hyeong Geon;Kwak, Ho-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.376-381
    • /
    • 2019
  • Objective : To define optimal method that calculate the safe direction of cervical pedicle screw placement using computed tomography (CT) image based three dimensional (3D) cortical shell model of human cervical spine. Methods : Cortical shell model of cervical spine from C3 to C6 was made after segmentation of in vivo CT image data of 44 volunteers. Three dimensional Cartesian coordinate of all points constituting surface of whole vertebra, bilateral pedicle and posterior wall were acquired. The ideal trajectory of pedicle screw insertion was defined as viewing direction at which the inner area of pedicle become largest when we see through the biconcave tubular pedicle. The ideal trajectory of 352 pedicles (eight pedicles for each of 44 subjects) were calculated using custom made program and were changed from global coordinate to local coordinate according to the three dimensional position of posterior wall of each vertebral body. The transverse and sagittal angle of trajectory were defined as the angle between ideal trajectory line and perpendicular line of posterior wall in the horizontal and sagittal plane. The averages and standard deviations of all measurements were calculated. Results : The average transverse angles were $50.60^{\circ}{\pm}6.22^{\circ}$ at C3, $51.42^{\circ}{\pm}7.44^{\circ}$ at C4, $47.79^{\circ}{\pm}7.61^{\circ}$ at C5, and $41.24^{\circ}{\pm}7.76^{\circ}$ at C6. The transverse angle becomes more steep from C3 to C6. The mean sagittal angles were $9.72^{\circ}{\pm}6.73^{\circ}$ downward at C3, $5.09^{\circ}{\pm}6.39^{\circ}$ downward at C4, $0.08^{\circ}{\pm}6.06^{\circ}$ downward at C5, and $1.67^{\circ}{\pm}6.06^{\circ}$ upward at C6. The sagittal angle changes from caudad to cephalad from C3 to C6. Conclusion : The absolute values of transverse and sagittal angle in our study were not same but the trend of changes were similar to previous studies. Because we know 3D address of all points constituting cortical shell of cervical vertebrae. we can easily reconstruct 3D model and manage it freely using computer program. More creative measurement of morphological characteristics could be carried out than direct inspection of raw bone. Furthermore this concept of measurement could be used for the computing program of automated robotic screw insertion.