• Title/Summary/Keyword: Transverse Shear Deformation

Search Result 415, Processing Time 0.038 seconds

Seismic tests of RC shear walls confined with high-strength rectangular spiral reinforcement

  • Zhao, Huajing;Li, Qingning;Song, Can;Jiang, Haotian;Zhao, Jun
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • In order to improve the deformation capacity of the high-strength concrete shear wall, five high-strength concrete shear wall specimens confined with high-strength rectangular spiral reinforcement (HRSR) possessing different parameters, were designed in this paper. One specimen was only adopted high-strength rectangular spiral hoops in embedded columns, the rest of the four specimens were used high-strength rectangular spiral hoops in embedded columns, and high-strength spiral horizontal distribution reinforcement were used in the wall body. Pseudo-static test were carried out on high-strength concrete shear wall specimens confined with HRSR, to study the influence of the factors of longitudinal reinforcement ratio, hoop reinforcement form and the spiral stirrups outer the wall on the failure modes, failure mechanism, ductility, hysteresis characteristics, stiffness degradation and energy dissipation capacity of the shear wall. Results showed that using HRSR as hoops and transverse reinforcements could restrain concrete, slow load carrying capacity degeneration, improve the load carrying capacity and ductility of shear walls; under the vertical force, seismic performance of the RC shear wall with high axial compression ratio can be significantly improved through plastic hinge area or the whole body of the shear wall equipped with outer HRSR.

A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates

  • Elmossouess, Bouchra;Kebdani, Said;Bouiadjra, Mohamed Bachir;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.401-415
    • /
    • 2017
  • A new higher shear deformation theory (HSDT) is presented for the thermal buckling behavior of functionally graded (FG) sandwich plates. It uses only four unknowns, which is even less than the first shear deformation theory (FSDT) and the conventional HSDTs. The theory considers a hyperbolic variation of transverse shear stress, respects the traction free boundary conditions and contrary to the conventional HSDTs, the present one presents a new displacement field which includes undetermined integral terms. Material characteristics and thermal expansion coefficient of the sandwich plate faces are considered to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are supposed as uniform, linear and non-linear temperature rises within the thickness direction. An energy based variational principle is used to derive the governing equations as an eigenvalue problem. The validation of the present work is carried out with the available results in the literature. Numerical results are presented to demonstrate the influences of variations of volume fraction index, length-thickness ratio, loading type and functionally graded layers thickness on nondimensional thermal buckling loads.

Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle

  • Gafour, Youcef;Hamidi, Ahmed;Benahmed, Abdelillah;Zidour, Mohamed;Bensattalah, Tayeb
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.37-47
    • /
    • 2020
  • This work focuses on the behavior of non-local shear deformation beam theory for the vibration of functionally graded (FG) nanobeams with porosities that may occur inside the functionally graded materials (FG) during their fabrication, using the non-local differential constitutive relations of Eringen. For this purpose, the developed theory accounts for the higher-order variation of transverse shear strain through the depth of the nanobeam. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived from Hamilton's principle. Analytical solutions are presented for a simply supported FG nanobeam with porosities. The validity of this theory is verified by comparing some of the present results with other higher-order theories reported in the literature, the influence of material parameters, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM beam are represented by numerical examples.

Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method

  • Gao, Yang;Xiao, Wan-Shen;Zhu, Haiping
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.205-219
    • /
    • 2019
  • This paper analyzes nonlinear free vibration of the circular nano-tubes made of functionally graded materials in the framework of nonlocal strain gradient theory in conjunction with a refined higher order shear deformation beam model. The effective material properties of the tube related to the change of temperature are assumed to vary along the radius of tube based on the power law. The refined beam model is introduced which not only contains transverse shear deformation but also satisfies the stress boundary conditions where shear stress cancels each other out on the inner and outer surfaces. Moreover, it can degenerate the Euler beam model, the Timoshenko beam model and the Reddy beam model. By incorporating this model with Hamilton's principle, the nonlinear vibration equations are established. The equations, including a material length scale parameter as well as a nonlocal parameter, can describe the size-dependent in linear and nonlinear vibration of FGM nanotubes. Analytical solution is obtained by using a two-steps perturbation method. Several comparisons are performed to validate the present analysis. Eventually, the effects of various physical parameters on nonlinear and linear natural frequencies of FGM nanotubes are analyzed, such as inner radius, temperature, nonlocal parameter, strain gradient parameter, scale parameter ratio, slenderness ratio, volume indexes, different beam models.

Buckling analysis of FG plates via 2D and quasi-3D refined shear deformation theories

  • Lemya Hanifi Hachemi Amar;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Kouider Halim Benrahou;Hind Albalawi;Abdeldjebbar Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.765-780
    • /
    • 2023
  • In this work, a novel combined logarithmic, secant and tangential 2D and quasi-3D refined higher order shear deformation theory is proposed to examine the buckling analysis of simply supported uniform functionally graded plates under uniaxial and biaxial loading. The proposed formulations contain a reduced number of variables compared to others similar solutions. The combined function employed in this study ensures automatically the zero-transverse shear stresses at the free surfaces of the structure. Various models of the material distributions are considered (linear, quadratic, cubic inverse quadratic and power-law). The differentials stability equations are derived via virtual work principle with including the stretching effect. The Navier's approach is applied to solve the governing equations which satisfying the boundary conditions. Several comparative and parametric studies are performed to illustrates the validity and efficacity of the proposed model and the various factors influencing the critical buckling load of thick FG plate.

A Study on the Damage of CFRP Laminated Composites Under Out-of-Plane Load (횡방향 하중을 받는 CFRF 적층복합재의 내부손상에 관한 연구)

  • Kim, Moon-Saeng;Park, Seung-Bum;Oh, Deug-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.98-109
    • /
    • 1995
  • An investigation was performed to study the inner damage of laminated composite plates subjected to out-of-plane load. During the investigation, inpact velocity and equivalent static load relationship was derived. Reddy's higher-order shear deformation theory(HSDT) and Hashin's failure criteria were used to determine inner stresses and damaged area. And impact testing was carried out on laminated composite plates by air gun type impact testing machine. The CFRP specimens were composed of [ .+-. 45 .deg. ]$_{4}$and [ .+-. 45 .deg. /0 .deg. /90 .deg. ]$_{2}$ stacking sequences with 0.75$^{t}$ * 26$^{w}$ * 100$^{l}$ (mm) dimension. After impact testing. As a result, a relationship holds between damaged area and impact energy, and a matrix cracking was caused by the interlaminar shear stress in the middle ply and was caused by the inplane transverse stress in the bottom ply.

  • PDF

Improvement of Enhanced Assumed Strain Four-node Finite Element Based on Reissner-Mindlin Plate Theory (개선된 추가변형률 4절점 평판휨 요소)

  • Chun, Kyoung Sik;Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.295-303
    • /
    • 2004
  • In this paper, an improved four-node Reissner-Mindlin plate-bending element with enhanced assumed strain field is presented for the analysis of isotropic and laminated composite plates. To avoid the shear locking and spurious zero energy modes, the transverse shear behavior is improved by the addition of a new enhanced shear strain based on the incompatible displacement mode approach and bubble function. The "standard" enhanced strain fields (Andelfinger and Ramm, 1993) are also employed to improve the in-plane behaviors of the plate elements. The four-node quadrilateral element derived using the first-order shear deformation theory is designated as "14EASP". Several applications are investigated to assess the features and the performances of the proposed element. The results are compared with other finite element solutions and analytical solutions. Numerical examples show that the element is stable, invariant, passes the patch test, and yields good results especially in highly distorted regimes.

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory

  • El-Hassar, Sidi Mohamed;Benyoucef, Samir;Heireche, Houari;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.357-386
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal stability of solar functionally graded rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown displacement functions are used in the present theory against five unknown displacement functions used in the corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the present theory, demonstrating its importance and accuracy in comparison to other theories.

Seismic Evaluation of the Existing RC Piers (기존 철근콘크리트 교각의 내진성평가)

  • 전귀현;이지훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.155-168
    • /
    • 1998
  • In this paper, the structural properties of the existing reinforced concrete(RC) piers are surveyed and the major factors influencing the member strength and deformation capacity are identified. Also a seismic evaluation procedure of RC piers is presented. The factors controlling the member strength are the applied axial load, the reinforcement ratio and yield strength of longitudinal rebar for flexural strength, and the transverse reinforcement for shear strength. Member deformation capacity largely depends on transverse reinforcement ratio and anchor detail, and splice location of longitudinal reinforcement. The above structural detail should be investigated for the detail seismic evaluation of RC piers. The most of existing RC piers have inadequate transverse reinforcement anchor details and the splices of longitudinal reinforcement in the pier bottom where plastic hinges are formed after yielding. Therefore the deformation capacity is not enough for the ductile flexural behavior of the RC piers. The presented evaluation procedure can be used for the rational decisions as to seismic retrofitting of the existing RC piers.

  • PDF

Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation

  • Chami, Khaldoune;Messafer, Tahar;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.91-101
    • /
    • 2020
  • This work presents an efficient and original hyperbolic shear deformation theory for the bending and dynamic behavior of functionally graded (FG) beams resting on Winkler - Pasternak foundations. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present theory, the equations of motion are derived from Hamilton's principle. Navier type analytical solutions are obtained for the bending and vibration problems. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and vibration behavior of functionally graded beams.