• 제목/요약/키워드: Transverse Curvature

검색결과 101건 처리시간 0.022초

CFRP 적층쉘의 적층구성 및 곡률 변화에 따른 관통 특성 (Penetration Characteristics of CFRP Laminated shells according to Stacking Sequence and Curvature)

  • 조영재;김영남;양인영
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.164-171
    • /
    • 2005
  • This study aims to examine an effect of stacking sequence and curvature on the penetration characteristic of a composite laminated shell. For the purpose, we manufactured specimens with different stacking sequences and curvatures, and conducted a penetration test using an air-gun. To examine an influence according to stacking sequence, as flat plate and curvature specimen had more plies, their critical penetration energy was higher, Critical penetration energies of specimen A and C with less interfaces somewhat higher than those of B and D with more interfaces. The reason that with less interfaces, critical penetration energy was higher is pre-impact bending stiffness of composite laminated shell with less interfaces was lower than that of laminated shell with more interfaces, but bending stiffness after impact was higher. And it is because interface, the weakest part of the composite laminated shell, was influenced by transverse impact. As curvature increases, critical penetration energy increases linearly. It is because as curvature increases, resistance to in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. Patterns of cracks caused by penetration of composite laminated shells include interlaminar crack, intralaminar crack, and laminar fracture. A 0$^{\circ}$ply laminar had a matrix crack, a 90$^{\circ}$ply laminar had intralaminar crack and laminar fracture, and interface between 0$^{\circ}$and 90$^{\circ}$laminar had a interlaminar crack. We examined crack length and delamination area through a penetration test. For the specimen A and C with 2 interface, the longest circumferential direction crack length and largest delamination area were observed on the first interface from the impact point. For the specimen B and D with 4 interface, the longest crack length and largest delamination area were observed on the third interface from the impact point.

핵연료 수로내 난류 유동에 대한 횡방향 볼록구배의 영향 (Effect of Transverse Convex Curvature on Turbulent Fluid Flow in Fuel Channel)

  • Lee, Yung;Ahn, Seung-Hoon;Kim, Hyong-Chol
    • Nuclear Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.440-452
    • /
    • 1994
  • 핵연료 다발의 설계는 핵연료 표면에서의 열속이 임계열속에 도달되지 않도록 이루어져야한다. 이를 위해서는 설계된 핵연료 다발에 대한 임계열속이 정화하고 신뢰성 있게 평가되는 것이 매우 중요하다. 그러나 현재 사용되고 있는 임계열속 상관식에 관한 쟁점 대상중의 하나는 원통튜브관에서 실험적으로 얻어진 임계열속 자료가 유효직경 형태의 변수와 적당한 보정인자를 사용하여 핵연료다발 부수로 분석에 사용되고 있다는 것인데, 이러한 방법은 임계열속 예측에 있어서 불확실도 요인으로 작용하고 있다. 유효직경은 유동단면적상의 국부적 유체 특성을 제대로 표현하지 못 할 뿐만 아니라 표면구배효과 등을 고려할 수 없다. 더구나 난류유동은 오목구배면에서 보다는 볼록구배면에서 더욱 두드러진다. 즉, 횡방향 볼록구배면이 오목구배면 보다 유동의 반경방향으로의 난류 형성에 영향이 훨씬 크게 나타나는데, 이는 정화한 핵연료 임계열속 평가에 있어서 볼록구배의 영향이 반드시 고려되어야 함을 암시하는 것이다. 본 논문에서는 횡방향 구배의 유동영향에 대하여 전반적으로 심도있게 고찰하고 임계열속에 대한 영향이 논의 되었으며, 이 영향을 정량화하기 위하여 고려되어야 할 유동 모델과 향후 연구 방향이 제시되었다.

  • PDF

선형 배열 롤 셋 공정에서의 중간 형상 설계 (Design of intermediate shape in line array roll set (LARS) process)

  • 심도식;양동열;정성욱;한명수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.215-219
    • /
    • 2009
  • For the effective manufacture of doubly curved metal plates, a line array roll set (LARS) process is proposed. The suggested process utilizes a pair of upper and lower symmetric roll assemblies. In the process, the initial plate is progressed into the final shape in a stepwise or pathwise manner according to the basic principle of the incremental forming process. In this work, the intermediate shape which is closest to a final shape is proposed to fabricate the desired shape effectively in design of forming schedule. The intermediate shape has homogeneous curvature in a longitudinal and transverse direction so that it can be fabricated easily without complicated controls of rolls in the roll set. The method of approximation using genetic algorithm is proposed and applied to some actual ship hulls to evaluate the efficiency of the algorithm.

  • PDF

In-plane vibrations of cracked slightly curved beams

  • Oz, H. Ridvan
    • Structural Engineering and Mechanics
    • /
    • 제36권6호
    • /
    • pp.679-695
    • /
    • 2010
  • In-plane vibrations of slightly curved beams having cracks are investigated numerically and experimentally. The curvature of the beam is circular and stays in the plane of vibration. Specimens made of steel with different lengths but with the same radius of curvature are used in the experiments. Cracks are opened using a hand saw having 0.4 mm thickness. Natural frequencies depending on location and depth of the cracks are determined using a Bruel & Kjaer 4366 type accelerometer. Then the beam is assumed as a Rayleigh type slightly curved beam in finite element method (FEM) including bending, extension and rotary inertia. A flexural rigidity equation given in literature for straight beams having a crack is used in the analysis. Frequencies are obtained numerically for different crack locations and depths. Experimental results are presented and compared with the numerical solutions. The natural frequencies are affected too much due to larger moments when the crack is around nodes. The effect can be neglected when it is at the location of maximum displacements. When the crack is close to the clamped end, the decrease in the frequencies in all modes is very high. The consistency of the results and validity of the equations are discussed.

Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection

  • Ehyaei, Javad;Daman, Mohsen
    • Advances in nano research
    • /
    • 제5권2호
    • /
    • pp.179-192
    • /
    • 2017
  • The transverse vibration of double walled carbon nanotube (DWCNT) embedded in elastic medium with an initial imperfection is considered. In this paper, Timoshenko beam theory is employed. However the nonlocal theory is used for modeling the nano scale of nanotube. In addition, the governing Equations of motion are obtained utilizing the Hamilton's principle and simply-simply boundary conditions are assumed. Furthermore, the Navier method is used for determining the natural frequencies of DWCNT. Hence, some parameters such as nonlocality, curvature amplitude, Winkler and Pasternak elastic foundations and length of the curved DWCNT are analyzed and discussed. The results show that, the curvature amplitude causes to increase natural frequency. However, nonlocal coefficient and elastic foundations have important role in vibration behavior of DWCNT with imperfection.

Assessment of multi-physical field effects on nonlinear static stability behavior of nanoshells based on a numerical approach

  • Zhanlei Wang;Ye Chen
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.513-523
    • /
    • 2023
  • Buckling and post-buckling behaviors of geometrically perfect double-curvature shells made from smart composites have been investigated. The shell has been supposed to be exposed to transverse mechanical loading and magneto-electro-elastic (MEE) coupling. The composite shell has been made of two constituents which are piezoelectric and magnetic ingredients. Thus, the elastic properties might be variable based upon the percentages of the constituents. Incorporating small scale impacts in regard to nonlocal theory leads to the establishment of the governing equations for the double-curvature nanoshell. Such nanoshell stability will be shown to be affected by composite ingredients. More focus has been paid to the effects of small scale factor, electric voltage and magnetic intensity on stability curves of the nanoshell.

Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams

  • Arefi, Mohammed;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.579-590
    • /
    • 2018
  • Size-dependent free vibration responses and magneto-electro-elastic bending results of a three layers piezomagnetic curved beam rest on Pasternak's foundation are presented in this paper. The governing equations of motion are derived based on first-order shear deformation theory and nonlocal piezo-elasticity theory. The curved beam is containing a nanocore and two piezomagnetic face-sheets. The piezomagnetic layers are imposed to applied electric and magnetic potentials and transverse uniform loadings. The analytical results are presented for simply-supported curved beam to study influence of some parameters on vibration and bending results. The important parameters are spring and shear parameters of foundation, applied electric and magnetic potentials, nonlocal parameter and radius of curvature of curved beam. It is concluded that the increase in radius of curvature tends to an increase in the stiffness of curved beam and consequently natural frequencies increase and bending results decrease. In addition, it is concluded that with increase of nonlocal parameter of curved beam, the stiffness of structure is decreased that leads to decrease of natural frequency and increase of bending results.

New Seismic Design Concept for RC Bridge Columns

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.204-209
    • /
    • 2003
  • The purpose of this study is to develop new seismic design concept based on ductility demand for reinforced concrete bridge columns in areas of low to moderate seismicity. In developing the ductility based design approach, relationship between ductility demand and transverse reinforcement demand should be quantitatively developed. To evaluate ductility capacity of reinforced concrete columns, analytical models and a non-linear analysis program, NARCC have been developed. Based on analytical and experimental results, an equation for relationship between curvature ductility and displacement ductility, an equation for designing the transverse confinement reinforcement for ductility demand, and a new seismic design concept of RC bridge columns are presented.

  • PDF

중수로 압력관 LBB 평가에서의 수소화물에 의한 취화거동 (Hydride Embrittlement Behavior at the LBB Evaluation of PHWR Pressure Tube)

  • 오동준;김영석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1192-1197
    • /
    • 2003
  • The aim of this study is to investigate the hydride embrittlement when the LBB evaluation is carried out for the integrity of PHWR Pressure Tubes. The transverse tensile and CCT tests were performed at three hydrogen concentrations while the test temperatures were changed (RT to $300^{\circ}C$). The specimens were directly machined from the pressure tube retaining original curvature. Both the transverse tensile and the fracture toughness tests showed the hydrogen embrittlement clearly at RT but this phenomenon was disappeared while the test temperature arrived over $250^{\circ}C$. Using the DHC test results, the CCL and LBB time were calculated and compared. The hydride embrittlement behavior at the LBB evaluation was definitely showed.

  • PDF

철근콘크리트 휨 부재에서 인장, 압축 및 횡보강근이 연성률에 미치는 효과 (Effect of Tension, Compression and Lateral Reinforcement In Ductility Ratio in RC Flexural Members)

  • 연규원;박찬수
    • 콘크리트학회논문집
    • /
    • 제13권6호
    • /
    • pp.553-560
    • /
    • 2001
  • 철근콘크리트 휨부재의 비탄성해석 및 설계를 위해서는 연성능력의 평가가 필요하며, 이를 위해서는 모멘트-곡률 관계가 정의되어야 한다. 따라서, 본 연구에서는 모멘트 곡률관계를 가정하여 철근콘크리트 휨부재의 연성능력을 해석적 방법으로 구하고, 실험결과와 비교한 결과, 실험값과 해석값은 거의 일치하였으므로 가정한 모멘트-곡률관계는 적합한 것으로 판명 되었다. 또한, 연성률은 곡률연성, 회전연성, 변위연성을 비교하였으며, 철근콘크리트 휨부재의 연성능력에 주로 영향을 미치는 요소는 인장철근, 압축철근 및 휨보강근으로 보고, 실험값과 해석값을 다양하게 분석한 결과 ($\rho$$_{s}$$\rho$')/$\rho$의 항으로 연성능력을 나타냄이 적절한 것으로 나타났다.