• 제목/요약/키워드: Transport kinetics

검색결과 121건 처리시간 0.023초

디젤엔진의 $NO_X$ 저감을 위한 SCR $DeNO_X$ 촉매의 모델링 및 성능해석 (Modeling and Performance Analysis of SCR $DeNO_X$ Catalyst for Reducing $NO_X$ Emissions in Diesel Engine)

  • 김영득;김우승;이천환
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.137-145
    • /
    • 2009
  • The steady-state kinetics of the selective catalytic reduction (SCR) of $NO_X$ with $NH_3$ has been investigated over a commercial ${V_2}{O_5}/TiO_2$ catalyst. In order to account for the influence of transport effects the kinetics are coupled with a fully transient two-phase 1D+1D monolith channel model. The Langmuir-Hinshelwood (L-H) mechanism is adopted to describe the steady-state kinetic behavior of the ${V_2}{O_5}/TiO_2$ catalyst. The reaction rate expressions are based on previously reported papers and are modified to fit the experimental data. The steady-state chemical reaction scheme used in the present mathematical model has been validated extensively with experimental data of selective $NO_X$ reduction efficiency for a wide range of inlet conditions such as space velocity, oxygen concentrations, water concentration, and $NO_2/NO$ ratio. The parametric investigations are performed to examine how the $NH_3$ slip from a SCR $DeNO_X$ catalyst and the conversion of $NO_X$ are affected by the reaction temperature, $NH_3/NO_X$ feed ratio, and space velocity for feed gas compositions with $NO_2/NO_X$ ratios of 0 and 0.5.

불소고분자-방향족 용매계의 비이상적 흡수에 대한 확산 모델식의 적용 (Application of Diffusion Models to Anomalous Sorption in Fluoropolymer-aromatic Solvent Systems)

  • 이상화
    • 멤브레인
    • /
    • 제10권3호
    • /
    • pp.139-147
    • /
    • 2000
  • 불소고분자(ETFE, ECTFE, PVDF)내로 방향족 유기용매(벤젠, 톨루엔, 클로로벤젠)의 비정상 흡수실험에서 non-Fickian (혹은 비이상적인) 확산이 관측되었다. 본 연구에서는 Fick's 법칙에 바탕을 둔 확산모델식(Crank, Long & Richman, Berens & Hopfenberg, Neogi, Li)을 이용하여 방향족 유기용매의 흡수실험에서 관측된 비이상적 흡수데이터론 분석하였다. 모델식의 매개변수 값은 실험데이터와 모델 예측 값의 차이를 최소화하는 least square 법을 이용하여 결정하였다. Fickian 확산으로부터 약간 벗어나는 ETFE 흡수데이터는 앞에서 언급한 모델식들을 이용하여 모두 만족할 만한 결과를 얻었다. 특히 Neogi 모델식은 ETFE-용매계의 고유확산계수(0.4~0.8$\times$$10^-5{cm}^2$/day) 및 평형 확산계수(0.13~0.31$\times$$10^-4{cm}^2$/day), 고분자구조의 이완 속도상수 값을 예측해주었다. PVDF의 전형적인 sigmoidal 흡수데이터에 대해서는 Crank 모델이 비교적 잘 적용되었으며, 초기 확산계수와 평형 확산계수간의 비($D_{\infty}/D_i$)는 80~200의 값을 나타내주었다. 가속적인 흡수데이터를 나타내주는 ECTFE의 경우에는 모든 모델식들의 예측 결과가 상당히 벗어났다. Fickian 확산으로부터 많이 벗어나는 비이상적인 흡수데이터로부터 확산 이동성질과 고분자구조의 이완현상에 대한 정보를 얻기 위해서는 열역학이나 continuum mechanics에 바탕을 둔 새로운 모델식을 적용해야 할 것으로 사료된다.

  • PDF

열/화학적 에너지 평형을 고려한 통합 연료 개질 시스템의 수치적 연구 (Numerical Analysis of Integrated Fuel Processing System Considering Thermo-Chemical Energy Balance)

  • 노정훈;정혜미;정운호;윤왕래;엄석기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.111.1-111.1
    • /
    • 2010
  • This paper focuses on a systematic configuration of steam reforming fuel processor, particularly designed for small and medium sized hydrogen production application. In a typical integration of the fuel processor, there exist significant temperature gradients over the entire system which has negative effect on both catalyst life-time and system performance. Also, the volumetric inefficiency should be avoided to obtain the possible compactness for the commercial purpose. In the present work, the computational analysis will be performed to gain the fundamental insight on the transport phenomena and chemical reactions in the reformer consisting of preheating, steam reforming (SR), and water gas shift (WGS) reaction beds in the flow direction. Also, the fuel processing system includes a top-fired burner providing necessary thermal energy for endothermic catalytic reactor. A fully two-dimensional numerical modeling for a integrated fuel processing system is introduced for in-depth analysis of the heat and mass transport phenomena based on surface kinetics and catalytic process. In the model, water gas shift reaction and decomposition reaction were assumed to be at equilibrium. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Finally, the case study was done by considering the key parameters, i.e. steam to carbon (S/C) ratio and temperature. The computer-aided models developed in this study can be greatly utilized for the design of advanced fast-paced compact fuel processors research.

  • PDF

Cisplatin-induced Alterations of $Na^+$-dependent Phosphate Uptake in Renal Epithelial Cells

  • Lee, Sung-Ju;Kwon, Chae-Hwa;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권2호
    • /
    • pp.71-77
    • /
    • 2007
  • Cisplatin treatment increases the excretion of inorganic phosphate in vivo. However, the mechanism by which cisplatin reduces phosphate uptake through renal proximal tubular cells has not yet been elucidated. We examined the effect of cisplatin on $Na^+$-dependent phosphate uptake in opossum kidney (OK) cells, an established proximal tubular cell line. Cells were exposed to cisplatin for an appropriate time period and phosphate uptake was measured using $[^{32}P]$-phosphate. Changes in the number of phosphate transporter in membranes were evaluated by kinetic analysis, $[^{14}C]$phosphonoformic acid binding, and Western blot analysis. Cisplatin inhibited phosphate uptake in a time- and dose-dependent manner, and also the $Na^+$-dependent uptake without altering $Na^+$-independent uptake. The cisplatin inhibition was not affected by the hydrogen peroxide scavenger catalase, but completely prevented by the hydroxyl radical scavenger dimethylthiourea. Antioxidants were ineffective in preventing the cisplatin-induced inhibition of phosphate uptake. Kinetic analysis indicated that cisplatin decreased Vmax of $Na^+$-dependent phosphate uptake without any change in the Km value. $Na^+$-dependent phosphonoformic acid binding was decreased by cisplatin treatment. Western blot analysis showed that cisplatin caused degradation of $Na^+$-dependent phosphate transporter protein. Taken together, these data suggest that cisplatin inhibits phosphate transport in renal proximal tubular cells through the reduction in the number of functional phosphate transport units. Such effects of cisplatin are mediated by production of hydroxyl radicals.

전산유체역학을 이용한 PEMFC의 성능에 대한 3차원 유로 구조의 영향 (Effects of 3D Flow-Channel Configurations on the Performance of PEMFC using Computational Fluid Dynamics)

  • 한경호;윤도영
    • Korean Chemical Engineering Research
    • /
    • 제54권6호
    • /
    • pp.847-853
    • /
    • 2016
  • 본 연구에서는 3차원 전산유체역학 모델을 적용하여 서펜타인 유로를 갖는 고분자 전해질 분리막(PEM) 연료전지의 성능평가를 수행하였다. PEM 연료전지의 전산 모델은 등온조건하에서의 이동현상을 고려하여, 물질 및 운동량 전달, 전극에서의 반응속도론 그리고 전기적 흐름을 모두 포함하였다. 한편, 병류로 흐르도록 형성된 구조의 유로 형태는 본 연료전지모델에서 유로의 폭과 높이의 비인 종횡비와 유로와 립 폭의 비인 반응면적비를 변화시키며 다양한 형상으로 고려되었다. 유로의 형상이 변화될 경우 연료전지 내부의 수소와 산소의 질량분율 분포가 계산되었으며, 이에 따라, 활성화과전압의 계산 값이 변하게 되며 전류밀도 분포가 최종적으로 결정되었다. CFD 결과는 종횡비가 클수록 성능이 증가하고 반응면적비가 클수록 성능이 감소하는 것을 보였다. 본 연구의 모델에 의하면 서펜타인 유로의 형상에 의해, 성능특성이 경향성을 보이는 결과를 보여주었으며, 이와같은 결과는 다른 문헌에 보고 된 CFD 결과들과 전반적으로 잘 부합하는 것으로 나타났다.

Fabrication and Characterization of Dye-sensitized Solar Cells based on Anodic Titanium Oxide Nanotube Arrays Sensitized with Heteroleptic Ruthenium Dyes

  • Shen, Chien-Hung;Chang, Yu-Cheng;Wu, Po-Ting;Diau, Eric Wei-Guang
    • Rapid Communication in Photoscience
    • /
    • 제3권1호
    • /
    • pp.16-19
    • /
    • 2014
  • Anodic self-organized titania nanotube (TNT) arrays have a great potential as efficient electron-transport materials for dye-sensitized solar cells (DSSC). Herewith we report the photovoltaic and kinetic investigations for a series of heteroleptic ruthenium complexes (RD16-RD18) sensitized on TNT films for DSSC applications. We found that the RD16 device had an enhanced short-circuit current density ($J_{SC}/mAcm^{-2}=15.0$) and an efficiency of power conversion (${\eta}=7.2%$) greater than that of a N719 device (${\eta}=7.1%$) due to the increasing light-harvesting and the broadened spectral features with thiophene-based ligands. However, the device made of RD17 (adding one more hexyl chain) showed smaller $J_{SC}(14.1mAcm^{-2})$ and poorer ${\eta}(6.8%)$ compare to those of RD16 due to smaller amount of dye-loading and less efficient electron injection for the RD17 device than for the RD16 device. For the RD18 dye (adding one more thiophene unit and one more hexyl chain), we found that the device showed even lower $J_{SC}(13.2mAcm^{-2}) $ that led to a poorest device performance (${\eta}=6.2%$) for the RD18 device. These results are against to those obtained from the same dyes sensitized on $TiO_2$ nanoparticle films and they can be rationalized according to the electron transport kinetics measured using the methods of charge extraction and transient photovoltage decays.

Water Gas Shift Reactor의 Multiscale 모델링 및 모사 (Multiscale Modeling and Simulation of Water Gas Shift Reactor)

  • 이욱준;김기현;오민
    • Korean Chemical Engineering Research
    • /
    • 제45권6호
    • /
    • pp.582-590
    • /
    • 2007
  • Water gas shift reaction(WGSR)이 일어나는 파이럿 규모 고온반응기에서의 거동 및 성능을 예측하기 위하여 수학적 모델을 수립하고 모사를 수행하였다. 반응기의 형상, 유체 및 열 이동에 대해 상세한 모델링이 가능한 전산유체역학 기법과 공정시스템 공학에서 사용되는 공정모사 기법을 함께 사용한 multiscale 모델링 및 모사를 수행하였으며, 그 결과를 일반 공정모사와 비교하였다. Multiscale 모사를 통해 CO의 전환율은 최고 0.85, 발열반응으로 인해 충전층의 온도는 약 720 K까지 오름을 알 수 있었다. 또한 동적모사를 통해 시간에 따른 반응기내에서의 온도분포, 전환율 분포 등의 주요한 변수 및 성능들의 시간에 따른 변화를 예측할 수 있었다. Multiscale 모사 기법은 파이럿 규모의 반응기뿐 아니라 상업규모의 공정에 대해 실제 상황을 상세히 반영하여 정확한 예측이 가능하므로, 상업공정 설계에 주요한 기술로 사용될 수 있다.

Comparative Study of the Dissolution Profiles of a Commercial Theophylline Product after Storage

  • Negro, S.;Herrero-Vanrell, R.;Barcia, E.;Villegas, S.
    • Archives of Pharmacal Research
    • /
    • 제24권6호
    • /
    • pp.568-571
    • /
    • 2001
  • The purpose of this work was to study the effect of storage time and temperature on the in vitro release kinetics of a commercial sustained-release dosage form of theophylline, at different pHs of the dissolution medium. The formulation was stored at $35^{\circ}C$ for 16 months and at $45^{\circ}C$ for 8 months, with a relative humidity of 60%. The in vitro release tests were performed at pHs 2, 4, 6 and 7.4. The mean values of the transport coefficient n, were close to 0.5 in all the conditions tested, which indicates that the transport system is not modified after storage of the formulation at $35^{\circ}C$ and $45^{\circ}C$. The mean values of the dissolution rate constant ranged from 0.036 to 0.043 $min^{-n}$, under all the conditions tested. Significant differences (${\alpha}=0.05$) were found between pHs 2, 4 and 6, 7.4 for all the model-independent parameters studied. When the formulation was kept at $35^{\circ}C$ for 16 months, the mean percentage of drug dissolved at 8 hours was 25.61% (pHs 2, 4) and, 36.12% (pHs 6, 7.4), representing a 26% and 24% reduction, respectively. Simitar results were obtained after storing the formulation at $45^{\circ}C$ for 8 months, corresponding to 33.3% (pHs 2, 4) and, 22.5% (pHs 6, 7.4) diminution, respectively. The values of the similarity factory $f_2$, obtained were lower than 50, which indicates the lack of similarity among the dissolution profiles, after storing the formulation under the experimental Conditions tested.

  • PDF

MERCURY-INDUCED ALTERATIONS OF CHLOROPHYLL a FLUORESCENCE KINETICS IN ISOLATED BARLEY (Hordeum vulgare L. cv. ALBORI) CHLOROPLASTS

  • Chun, Hyun-Sik;Lee, Choon-Hwan;Lee, Chin-Bum
    • Journal of Photoscience
    • /
    • 제1권1호
    • /
    • pp.47-52
    • /
    • 1994
  • Effects of HgCl$_2$-treatment on electron transport, chlorophyll a fluorescence and its quenching were studied using isolated barley (Hordeum vulgare L. cv. Albori) chloroplasts. Depending on the concentration of HgCI$_2$, photosynthetic oxygen-evolving activities of photosystem II (PS II) were greatly inhibited, whereas those of photosystem I (PS I) were slightly decreased. The inhibitory effects of HgCl$_2$ on the oxygen-evolving activity was partially restored by the addition of hydroxyamine, suggesting the primary inhibition site by HgCl$_2$2-treatment is close to the oxidizing site of PS tl associated with water-splitting complex. Addition of 50 $\mu$M HgCI$_2$ decreased both photochemical and nonphotochemical quenching of chlorophyll fluorescence. Especially, energy dependent quenching (qE) was completely disappeared by HgCl$_2$-treatment as observed by NH$_4$CI treatment. In the presence of HgCI$_2$, F'o level during illumination was also increased. These results suggest that pH gradient across thylakoid membrane can not be formed in the presence of 0 $\mu$M HgCl$_2$. In addition, antenna pigment composition might be altered by HgCl$_2$-treatment.

  • PDF

Evidence for Sulfite Proton Symport in Saccharomyces cerevisiae

  • Park, Hoon;Alan T. Bakalinsky
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.967-971
    • /
    • 2004
  • The kinetics of sulfite uptake were examined in a wild-type laboratory strain of Saccharomyces cerevisiae to determine if carrier-mediated sulfite uptake involved a proton symport, as previous studies on sulfite uptake have suggested both an active process and facilitated diffusion. Accumulation of intracellular sulfite was initially rapid and linear up to 50 sec. Uptake was saturable at final concentrations equal to or greater than 3 mM sulfite, and increased 2-fold in the presence of 2% glucose. Uptake was significantly reduced in cells pretreated with 100-500 $\mu$M carbonyl cyanide mchlorophenylhydrazone (CCCP) or 2,4-dinitrophenol (DNP), both of which dissipate proton gradients. Uptake was also significantly inhibited in the presence of 1 mM arsenate, an inhibitor of ATP synthesis. Extracellular alkalization was observed in cells incubated with 1-2 mM sulfite in a weak tartrate buffer at pH 3.5 and 4.5. These findings suggest that the bisulfite ion, $HSO_3^-$, an anionic form of sulfite, is taken up by a carrier-mediated proton symport. A met16 sull sul2 mutant, impaired in both sulfite formation and sulfate uptake, was found able to grow on a medium with sulfite as the sole Sulfur source, indicating that the sulfate transporters Sul1p and Sul2p are not required for sulfite uptake.