• Title/Summary/Keyword: Transport in soil

Search Result 526, Processing Time 0.031 seconds

A Field Survey and Analysis of Ground Water Level and Soil Moisture in A Riparian Vegetation Zone (식생사주 역에서 지하수위와 토양수분의 현장 조사·분석)

  • Woo, Hyo-Seop;Chung, Sang-Joon;Cho, Hyung-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.797-807
    • /
    • 2011
  • Phenomenon of vegetation recruitment on the sand bar is drastically rising in the streams and rivers in Korea. In the 1960s prior to industrialization and urbanization, most of the streams were consisted of sands and gravels, what we call, 'White River'. Owing to dam construction, stream maintenance, etc. carried out since the '70s, the characteristic of flow duration and sediment transport have been disturbed resulting in the abundance of vegetation in the waterfront, that is, 'Green River' is under progress. This study purposed to identify the correlation among water level, water temperature, rainfall, soil moisture and soil texture out of the factors which give an effect on the vegetation recruitment on the sand bar of unregulated stream. To this purpose, this study selected the downstream of Naeseong Stream, one of sand rivers in Korea, as the river section for test and conducted the monitoring and analysis for 289 days. In addition, this study analyzed the aerial photos taken from 1970 to 2009 in order to identify the aged change in vegetation from the past to the present. The range of the tested river section was 361 m in transverse length and about 2 km in longitudinal length. According to the survey analysis, the tested river section in Naeseong Stream was a gaining river showing the higher underground-water level by 20~30 m compared to Stream water level. The difference in the underground water temperature was less than $5^{\circ}C$ by day and season and the Stream temperature did not fall to $10^{\circ}C$ and less from May when the vegetation germination begins in earnest. The impact factor on soil moisture was the underground water level in the lower layer and the rainfall in the upper layer and it was found that all the upper and lower layer were influenced by soil particle size. The soil from surface to 1 m-underground out of 6 soil moisture-measured points was sand with the $D_{50}$ size of 0.07~1.37 mm and it's assumed that the capillary height possible in the particle size would reach around 14~43 cm. On the other hand, according to the result of space analysis on the tested river section of unregulated stream for 40 years, it was found that the artificial disturbance and drought promoted the vegetation recruitment and the flooding resulted in the frequency extinction of vegetation communities. Even though the small and large scales of recruitment and extinction in vegetation have been repeated since 1970, the present vegetation area increased clearly compared to the past. It's found that the vegetation area is gradually increasing over time.

Model for Transport of Accidently Released Radionuclides onto Rice-Fields and its Comparison with Experimental Data (사고시 논으로 유출된 핵종 이동 모델 및 실험결과와의 비교)

  • Keum, Dong-Kwon;Lee, Han-Soo;Choi, Heui-Joo;Kang, Hee-Suk;Lim, Kwang-Muk;Choi, Young-Ho;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 2004
  • A dynamic compartment model was developed to evaluate the transport of accidently released radionuclides onto rice-fields. In the model, the surface water compartment and shoot-base absorption were introduced to account for the effect of irrigation, which is essential to a rice cultivation. The soil mixing by plough and irrigation before transplanting rice was also considered, and the rate of root-uptake and shoot-base absorption were modeled in terms of the function of biomass. In order to test the validation of the model, it was applied to the analysis of some simulated $^{137}Cs$ deposition experiments that were performed while cultivating rice in a greenhouse using soils sampled from rice-fields around Kori, Yonggwang and Ulchin nuclear power plants. The model prediction was generally agreed within about one order of magnitude with experimental data.

Comparative Analysis of SWAT Generated Streamflow and Stream Water Quality Using Different Spatial Resolution Data (SWAT모형에서 다양한 해상도에 따른 수문-수질 모의결과의 비교분석)

  • Park, Jong-Yoon;Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.102-106
    • /
    • 2008
  • This study is to evaluated the impact of varying spatial resolutions of DEM (2 m, 10 m, and 30 m), land use (QuickBird, 1/25,000 and Landsat), and soil data (1/25,000 and 1/50,000) on the uncertainty of Soil and Water Assessment Tool (SWAT) predicted streamflow, sediment, T-N, and T-P transport in a small agricultural watershed ($1.21\;km^2$). SWAT model was adopted and the model was calibrated for a $255.4\;km^2$ watershed using 30 m DEM, Landsat land use, and 1/25,000 soil data. The model was run with the combination of three DEM, land use, and soil map respectively. The SWAT model was calibrated for 2 years (1999-2000) using daily streamflow and monthly water quality (SS, T-N, T-P) records from 1999 to 2000, and verified for another 2 years (2001-2002). The average Nash and Sutcliffe model efficiency was 0.59 for streamflow and the root mean square error were 2.08, 4.30 and 0.70 tons/yr for sediment, T-N and T-P respectively. The hydrological results showed that output uncertainty was biggest by spatial resolution of land use. Streamflow increase the watershed average CN value of QucikBird land use was 0.4 and 1.8 higher than those of 1/25,000 and Landsat land use caused increase of streamflow.

  • PDF

Case study on the cause of failure and characteristics of soil at a collapsed cut-slope at the ${\bigcirc}{\bigcirc}$ Detour, Jeonranam-Do (전라남도 ${\bigcirc}{\bigcirc}$우회도로 비탈면 붕괴발생원인 및 토사지반특성 사례 연구)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Hwang, Jin-Hyun;Son, Moon
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.313-322
    • /
    • 2011
  • On September 2007, numerous slopes at Jeonranam-Do collapsed as a result of rainfall related to Typhoon Nari. Failure occurred at a road cut-slope on the ${\bigcirc}{\bigcirc}$ detour road, damaging transport infrastructure. This study aims to determine the cause of failure based on field investigations, the geotechnical properties of soil, clay mineral composition, and quantitative analysis. The studied cut slope consists of weathered soil that originated from volcanic rocks, and minor faults and a mafic dyke. Surface water tends to seep into the soil because the roadway is not sealed and because of poorly installed drainage. Sieve and XRD analyses indicate that soils in the failure zone are ML and CH, which are prone to swelling due to the presence of clay minerals such as smectite and vermiculite. The slope failed due to the improper construction of drainage facilities, the presence of geological weak zones, and high soil contents of swelling clay.

Water Quality and Sediment Contamination in the Iksan Stream (익산천 수질시료와 저질토의 오염도 평가)

  • Seo, Young-Seok;Cho, Min;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.123-128
    • /
    • 2013
  • Water quality and contamination of sediment is a growing concern in the Iksan stream of Korea. Heavy metal contamination and changes in the physicochemical properties of the stream were evaluated. Water and sediment samples were collected from six sites during the dry and rainy seasons; pH, DO, EC, ORP, turbidity, $PO_4$-P, $NO_3$-N and selected heavy metals (Cu, Pb, Ni, As, Zn, Cd, Hg) were measured. Results showed almost no change in pH between seasons. DO was highest at site 2 (~2.63 mg/L) in the dry season; EC (1,540 ms/m) was greatest at site 1 in both seasons. The ORP gradually increased from the dry to rainy season at most of the sites and was highest at site 5. Turbidity was highest at site 1 and gradually decreased from the dry to rainy season at all sites except site 3. $PO_4$-P ranged from a high of 1,193mg/L at site 1 to in the dry season to a low of ~1.2 mg/L at site 4. In contrast, $NO_3$-N was highest at site 3 in the rainy season (12,531 mg/L). Among the heavy metals measured, Cu and Zn concentrations were highest at all sediment sites. Cu and Zn are added to livestock feed to improve reproductive rates and can be carried to the stream with manure. Transport of sediment and heavy metals during the rainy season is the major source of stream contamination and it is important to continue monitoring and take necessary action in these areas.

Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.)

  • Hu, Haiyan;He, Jie;Zhao, Junjie;Ou, Xingqi;Li, Hongmin;Ru, Zhengang
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1199-1211
    • /
    • 2018
  • Soil acidification is one of major problems limiting crop growth and especially becoming increasingly serious in China owing to excessive use of nitrogen fertilizer. Only the STOP1 of Arabidopsis was identified clearly sensitive to proton rhizotoxicity and the molecular mechanism for proton toxicity tolerance of plants is still poorly understood. The main objective of this study was to investigate the transcriptomic change in plants under the low pH stress. The low pH as a single factor was employed to induce the response of the wheat seedling roots. Wheat cDNA microarray was used to identify differentially expressed genes (DEGs). A total of 1057 DEGs were identified, of which 761 genes were up-regulated and 296 were down-regulated. The greater percentage of up-regulated genes involved in developmental processes, immune system processes, multi-organism processes, positive regulation of biological processes and metabolic processes of the biological processes. The more proportion of down-regulation genes belong to the molecular function category including transporter activity, antioxidant activity and molecular transducer activity and to the extracellular region of the cellular components category. Moreover, most genes among 41 genes involved in ion binding, 17 WAKY transcription factor genes and 17 genes related to transport activity were up-regulated. KEGG analysis showed that the jasmonate signal transduction and flavonoid biosynthesis might play important roles in response to the low pH stress in wheat seedling roots. Based on the data, it is can be deduced that WRKY transcription factors might play a critical role in the transcriptional regulation, and the alkalifying of the rhizosphere might be the earliest response process to low pH stress in wheat seedling roots. These results provide a basis to reveal the molecular mechanism of proton toxicity tolerance in plants.

Monte-Carlo Simulations of Non-ergodic Solute Transport from Line Sources in Isotropic Mildly Heterogeneous Aquifers (불균질 등방 대수층 내 선형오염원으로부터 기원된 비에르고딕 용질 이동에 관한 몬테카를로 시뮬레이션)

  • Seo Byong-min
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.20-31
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a lion-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce tile simulation uncertainties. Ensemble averages of the second spatial moments of the plume and plume centroid variances were simulated with 1600 Monte Carlo runs for three variances of log K, ${\sigma}_Y^2=0.09,\;0.23$, and 0.46, and three dimensionless lengths of line plume sources normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are generally larger than the first order results. The first order theoretical results significantly underestimated the simulated dimensionless transverse moments for the aquifers of large ${\sigma}_Y^2$ and large dimensionless time. The ergodic condition for the second spatial moments is far from reaching in all cases simulated, and transport In transverse directions may reach ergodic condition much slower than that in longitudinal direction. The evolution of the contaminant transported in a heterogeneous aquifer is not affected by the shape of the initial plume but affected mainly by the degree of the heterogeneity and the size of the initial plume.

An Influence of Groundwater Flow on Performance of Closed Borehole Heat Exchangers (Part-2) (지하수류가 밀폐형 천공 지중 열교환기 성능에 미치는 영향(2))

  • Hahn, Jeongsang;Kiem, Youngseek;Lee, Juhyun;Lee, Byoungho;Hahn, Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.114-127
    • /
    • 2016
  • An increase of groundwater flux in BHE system creates that ground temperature (locT) becomes lower in summer and higher in winter time. In other words, it improves significantly the performance of BHE system. The size of thermal plume made up by advection driven-flow under the balanced energy load is relatively small in contrast to the unbalanced energy load where groundwater flow causes considerable change in the size of thermal plume as well ground temperature. The ground temperatures of the up gradient and down gradient BHEs under conduction only heat transport are same due to no groundwater flow. But a significant difference of the ground temperature is observed between the down gradient and up gradient BHE as a result of groundwater flow-driven thermal interference took placed in BHE field. As many BHEs are designed under the obscure assumption of negligible groundwater flow, failure to account for advection can cause inefficiencies in system design and operation. Therefore including groundwater flow in the design procedure is considered to be essential for thermal and economic sustain ability of the BHE system.

Identification of Potential Source Locations of PM2.5 in Seoul using Hybrid-receptor Models (하이브리드 수용모델을 이용한 서울시 PM2.5 오염원의 위치 추적)

  • Kang, Byung-Wook;Kang, Choong-Min;Lee, Hak-Sung;SunWoo, Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.662-673
    • /
    • 2008
  • Two hybrid receptor models, potential source contribution function (PSCF) and concentration weighted tracjectory (CWT), were compared for locating $PM_{2.5}$ sources contributing to the atmospheric $PM_{2.5}$ concentrations in Seoul. The source contribution estimates by chemical receptor model (CMB) receptor model were used to identify better source areas, Among the sources, soil, agricultural burning, marine aerosol, coal-fired power plant and Chinese aerosol were only considered for the study because these sources were more likely to be associated with the long-range transport of air pollutant. Both methods are based on combining chemical data with calculated air parcel backward trajectories. However, the PSCF analyses were performed with trajectories above the $75^{th}$ percentile criterion values, while the CWT analyses used all trajectories. This difference resulted in locating of different sources, which might be helpful to interpret locating of $PM_{2.5}$ sources, High possible source areas in source contribution of soil and agricultural burning contributing to the Seoul $PM_{2.5}$ were inland areas of Heibei and Shandong provinces (highest density areas of agricultural production and population) in China. The "Chinese aerosol" was used as a representative source for the $PM_{2.5}$ originated from urban area in China. High possible source areas for the aerosol were the cities in China where are relatively close to the receptor. This result suggests that Chinese aerosol is likely to be a useful tool in studies on source apportionment and identification in Korea.

Application and Assesment of Regrouting Method for Improperly Constructed Wells in Jeju Island (제주도의 오염 방지 시공이 부실한 지하수 관정에 대한 구간 차폐 공법의 적용과 평가)

  • Kim, Mijin;Kang, BongRae;Cho, Heuy Nam;Choi, Sung Ouk;Yang, Won-Seok;Park, Wonbae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.43-51
    • /
    • 2020
  • About 90% of groundwater wells in Jeju Island are reported to be under the threat of contamination by infiltration of the surface pollutants. Most of those wells have improperly grouted annulus which is an empty space between the well and the inner casing. As a remedy to this problem, some of the wells were re-grouted by filling the annulus with cement without lifting an inner casing. In order to evaluate whether this method is appropriate for the geological structure of Jeju Island, two wells (W1 and W2) were selected and this method was applied. The water holding capacity did not decrease while the nitrate levels decreased from 16.8 and 20.2 to 6.8 and 13.8 mg/L in W1 and W2, respectively. The higher nitrate level in W2 is deemed to be influenced by the livestock farms located in the upper area of the well. In addition, transmissivity of the vedose zone was higher in W2 than W1, potentially facilitating the transport of nitrate to the groundwater. The overall result of this study suggests re-grouting of wells for the purpose of protecting water quality of goundwater should take into account geological structure of vadose zone as well as appropriate source control of the contaminants.