• Title/Summary/Keyword: Transport Property

Search Result 321, Processing Time 0.03 seconds

Study on the Efficient White Organic Light-Emitting Diodes using the Material of Binaphthyl Group (Binaphthyl group 기반의 물질을 이용한 효율적인 White OLED 소자에 대한 연구)

  • Yeo, Hyun-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.459-465
    • /
    • 2012
  • We had synthesized a green dopant material based on the binaphthyl group, 7,7'-(2,2'dimethoxy-1,1'-binaphthyl-3,3'-diyl) bis(4-(thiophen -2-yl) benzo[e][1,2,5] thiadiazole (TBT). We also fabricated the white organic light emitting diode (OLED) with a phosphorescent blue emitter : iridium(III)bis[(4,6-di-fluoropheny)-pyridinato -N,C2]picolinate (FIrpic) doped in N,N'-dicarbazolyl-3,5-benzene (mCP) of hole transport type host material and both TBT and bis(2-phenylquinolinato)- acetylacetonate iridium(III) (Ir(pq)2acac) doped in 1,3,5-tris(N-phenylbenzimidazole -2-yl)benzene (TPBi) of electron transport type host material. As a result, the property of white OLED using TBT, which demonstrated a maximum luminous efficiency and external quantum efficiency of 5.94 cd/A and 3.23 %, respectively. It also showed the pure white emission with Commission Internationale de I'Eclairage (CIE) coordinates of (0.34, 0.36) at 1000 nit.

Physico-chemical properties of green leaf volatiles (GLV) for ascertaining atmospheric fate and transport in fog

  • Vempati, Harsha;Vaitilingom, Mickael;Zhang, Zenghui;Liyana-Arachchi, Thilanga P.;Stevens, Christopher S.;Hung, Francisco R.;Valsaraj, Kalliat T.
    • Advances in environmental research
    • /
    • v.7 no.2
    • /
    • pp.139-159
    • /
    • 2018
  • Green Leaf Volatiles (GLVs) is a class of biogenically emitted oxygenated hydrocarbons that have been identified as a potential source of Secondary Organic Aerosols (SOA) via aqueous oxidation. The physico-chemical properties of GLVs are vital to understanding their fate and transport in the atmosphere via fog processing, but few experimental data are available. We studied the aqueous solubility, 1-octanol/water partition coefficient, and Henry's law constant ($K_H$) of five GLVs at $25^{\circ}C$: methyl jasmonate, methyl salicylate, 2-methyl-3-buten-2-ol, cis-3-hexen-1-ol, and cis-3-hexenyl acetate. Henry's law constant was also measured at temperatures and ionic strengths typical of fog. Experimental values are compared to scarcely-available literature values, as well as estimations using group and bond contribution methods, property-specific correlations and molecular dynamics simulations. From these values, the partition coefficients to the air-water interface were also calculated. The large Henry's law constant of methyl jasmonate ($8091{\pm}1121M{\cdot}atm^{-1}$) made it the most significant GLV for aqueous phase photochemistry. The HENRYWIN program's bond contribution method from the Estimation Programs Interface Suite (EPI Suite) produced the best estimate of the Henry's constant for GLVs. Estimations of 1-octanol/water partition coefficient and solubility are best when correlating an experimental value of one to find the other. Finally, the scavenging efficiency was calculated for each GLV indicating aqueous phase processing will be most important for methyl jasmonate.

Antenna Selection Scheme Using Noncoherent Receivers for Off-Body High Data Rate WBAN (신체 외부 고속 통신에서 Noncoherent 수신기 기반의 안테나 선택 기법)

  • Park, Jong-Seok;Hwang, Jae-Ho;Jang, Sung-Jeen;Kim, Jae-Moung;Lee, Hyung-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.88-97
    • /
    • 2009
  • As the development of wireless techniques, transmission technology of body area network plays an important role in realizing a welfare society by combining IT and BT when applying to vehicles. Off-body WBAN (Wireless Body Area Network) systems for video data transmission require low battery consumption and high data rate. To satisfy the requirement, UWB has been considered as a promising candidate for high rate WBAN. This paper introduces an antenna selection technique for ultra-wideband based off-body WBAN system with low complexity. In this paper, we propose an antenna selection scheme using non-coherent receiver for off-body high data rate WBAN system. The proposed receiver antenna selection method takes advantage of the characteristic of BPPM (Binary Pulse Position Modulation). With the property of BPPM, this scheme calculates the approximate SNR of the received signal with non-coherent receiver.

  • PDF

The Framework of Aeronautical Information System for Volcanic Ash Hazard Management (화산재대응시스템을 위한 항공교통정보 프레임워크)

  • Nam, Doohee;Lee, Jinsun;Lee, Sangsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.166-175
    • /
    • 2017
  • Hazardous volcanic activity will continue to occur in the ring of fire, a major area in the basin of the Pacific Ocean where a large number of earthquakes and volcanic eruptions occur. and, because of rising populations, development pressures, and expanding national and international air traffic over volcanic regions, risks to life and property through exposure to volcano hazards continue to increase. During an eruption, volcanic contamination can reach and exceed the cruising altitudes of turbine-powered aircraft, among others, within minutes and spread over vast geographical areas within a few days. Volcanic ash can affect the operation of aircraft at aerodromes. Volcanic ash deposition at an aerodrome, even in very small amounts, can result in the closure of the aerodrome until all the deposited ash has been removed. In this study, air traffic information framework is presented along with algorithms to define affected routes, waypoints and airports using GIS geometry analysis.

Distributed Transmit Power Control for Optimal End-to-End Throughput in Wireless Multihop Networks (무선 멀티홉 네트워크에서 종단간 최적 전송률을 위한 분산 송신전력제어)

  • Choi, Hyun-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.92-101
    • /
    • 2012
  • In this paper, we propose a distributed transmit power control algorithm for optimal end-to-end throughput in wireless multihop networks. Considering a solidarity property of link rates consisting of a multihop link and the fact that the multihop end-to-end throughput is determined by the minimum link rate, the proposed scheme controls the transmit power to make all link rates be equal and so maximizes the end-to-end throughput of multihop link. In addition, in the proposed scheme the transmit node calculates its transmit power autonomously in a distributed manner just through the information sharing with its neighbor nodes and so decreases the information sharing overhead. Simulation results show that the proposed scheme achieves significant improvements in terms of end-to-end throughput and power consumption compared with the conventional maximum equal power allocation scheme.

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

Hazard Prevention Using Multi-Level Debris Flow Barriers (다단식(多段式) 유연성 토석류 방지시설에 관한 적용성 검토 연구)

  • Baek, Yong;Choi, Youngchul;Kwon, Oil;Choi, Seungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.15-23
    • /
    • 2010
  • Debris flows are a natural hazard which looks like a combination of flood, land and rock slide. Large rainfall in July 2006 produced several large scale debris flows and many small debris flows that resulted in loss of life and considerable property and railway damage, as was widely reported in the national media. The hazard "debris flow" is still insufficiently researched. Furthermore debris flows are very hard to predict. Flexible Ring net barriers are multi-functional mitigation devices commonly applied to rock fall or floating wood protection in floods, snow avalanches and also mud flows or granular debris flows, if properly dimensioned for the process or processes for which they are intended. Overtopping of the barriers by debris flows and sediment transport is possible, supporting the design concept that a series of barriers may be used to stop volumes of debris larger than are possible using only one barrier. The future for these barrier concepts looks promising because these barriers represent the state of art for such applications and are superior to many other available options.

Experimental Evaluation of Hydrophilic Membrane Humidifier with Isolation of Heat Transfer Effect (친수성 막을 통한 수분 전달 특성 연구)

  • Tak, Hyun Woo;Kim, Kyoung Teck;Han, Jae Young;Im, Seok Yeon;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.815-821
    • /
    • 2013
  • The efficiency and lifetime of a polymer electrolyte membrane fuel cell (PEMFC) system is critically affected by the humidity of the incoming gas, which should be maintained properly under normal operating conditions. Typically, the incoming gas of a fuel cell is humidified by an external humidifier, but few studies have reported on the device characteristics. In this study, a laboratory-scale planar membrane humidifier is designed to investigate the characteristics of water transport through a hydrophilic membrane. The planar membrane humidifier is immersed in a constant temperature bath to isolate the humidifier from the effect of temperature variations. The mass transfer capability of the hydrophilic membrane is first examined under isothermal conditions. Then, the mass transfer capability is investigated under various conditions. The results show that water transport in the hydrophilic membrane is significantly affected by the flow rate, operating temperature, operating pressure, and flow arrangement.

A Development of Rail-Transport Operation Control for High-Speed Railway under Rainfall (고속철도의 안전운행을 위한 강우시 열차운전규제기준의 제안)

  • Shin, Min-Ho;Hong, Man-Yong;Lee, Seong-Hyeok;Kim, Hyun-Ki;Kim, Jung-Ki
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.111-118
    • /
    • 2003
  • Korea High-Speed Railway has various safety systems to secure safe and stable transportation and makes assurance doubly sure to minimize casualty and property damage caused by natural disasters. But, there is no regulation that reflects domestic railway line, climate, topographical and geological characteristic in introducing the foreign regulations yet. Therefore, it is necessary for us to modify a regulation which is suitable to domestic high-speed railway. In this study, it is possible to establish more reasonable boundary rainfall by grasping and improving the troubles with existing boundary rainfall that is scheduled to be utilized for high-speed rail-transport operation control under rainfall. Also, it is possible to insure the safety of train by four steps such as 'normal operation', 'warning issue', 'train speed control' and 'train stop' using the established boundary rainfall. It will go far toward minimizing the occurrence of natural disasters.

Interfacial Charge Transport Anisotropy of Organic Field-Effect Transistors Based on Pentacene Derivative Single Crystals with Cofacial Molecular Stack (코페이셜 적층 구조를 가진 펜타센 유도체 단결정기반 유기트랜지스터의 계면 전하이동 이방성에 관한 연구)

  • Choi, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.20 no.4
    • /
    • pp.155-161
    • /
    • 2019
  • Understanding charge transport anisotropy at the interface of conjugated nanostructures basically gives insight into structure-property relationship in organic field-effect transistors (OFET). Here, the anisotropy of the field-effect mobility at the interface between 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) single crystal with cofacial molecular stacks in a-b basal plane and SiO gate dielectric was investigated. A solvent exchange method has been used in order for TIPS-pentacene single crystals to be grown on the surface of SiO2 thin film, corresponding to the charge accumulation at the interface in OFET structure. In TIPS-pentacene OFET, the anisotropy ratio between the highest and lowest measured mobility is revealed to be 5.2. By analyzing the interaction of a conjugated unit in TIPS-pentacene with the nearest neighbor units, the mobility anisotropy can be rationalized by differences in HOMO-level coupling and hopping routes of charge carriers. The theoretical estimation of anisotropy based on HOMO-level coupling is also consistent with the experimental result.