• 제목/요약/키워드: Transport Fraction of Debris

검색결과 3건 처리시간 0.019초

A PARTICLE TRACKING MODEL TO PREDICT THE DEBRIS TRANSPORT ON THE CONTAINMENT FLOOR

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.211-218
    • /
    • 2010
  • An analysis model on debris transport in the containment floor of pressurized water reactors is developed in which the flow field is calculated by Eulerian conservation equations of mass and momentum and the debris particles are traced by Lagrange equations of motion using the pre-determined flow field data. For the flow field calculation, two-dimensional Shallow Water Equations derived from Navier Stokes equations are solved using the Finite Volume Method, and the Harten-Lax-van Leer scheme is used for accuracy to capture the dry-to-wet interface. For the debris tracing, a simplified two-dimensional Lagrangian particle tracking model including drag force is developed. Advanced schemes to find the positions of particles over the containment floor and to determine the position of particles reflected from the solid wall are implemented. The present model is applied to calculate the transport fraction to the Hold-up Volume Tank in Advanced Power Reactors 1400. By the present model, the debris transport fraction is predicted, and the effect of particle density and particle size on transport is investigated.

CFD 를 이용한 OPR1000 원자력발전소 파단방출이동에 대한 수치해석적 평가 (Numerical Evaluation of Debris Transport During LOCA Blow-Down Phase of OPR1000 Nuclear Power Plant)

  • 최경식;박종필;정지환;김원태
    • 대한기계학회논문집B
    • /
    • 제35권3호
    • /
    • pp.255-262
    • /
    • 2011
  • 원자력발전소에 냉각재상실사고 발생 시 보온재 파편 등 이물질이 발생하여 방출된 냉각재를 따라 재순환 집수조에 흘러갈 수 있다. 이물질들이 펌프 흡입구에 축적되면 냉각수 흡입을 방해함으로써 원자력발전소 안전에 위협이 될 수 있다. NEI 04-07 및 USNRC 의 평가보고서가 이물질이동분율 평가에 대한 방법론을 제공하였지만 각 원자력발전소 고유특성을 반영한 추가적인 연구가 필요하다. 본 연구에서는 전산유체역학 코드를 사용한 원자력발전소 파단방출이동 해석 방법론을 수립하고 해석을 수행하였다. 해석 결과, 소형 이물질의 32%가 원자로건물 상부로 이동하였다. 이는 NEI 04-07 의 기본해석결과보다 7% 많은 양이다. 본 연구결과는 향후 수행될 이물질이동에 대한 해석적 연구에 중요한 참고자료가 될 것으로 판단된다.

FISSION PRODUCT AND ACTINIDE RELEASE FROM THE DEBRIS BED TEST PHEBUS FPT4: SYNTHESIS OF THE POST TEST ANALYSES AND OF THE REVAPORISATION TESTING OF THE PLENUM SAMPLES

  • Bottomley P.D.W.;Gregoire A.C.;Carbol P.;Glatz J.P.;Knoche D.;Papaioannou D.;Solatie D.;Van Winckel S.;Gregoire G.;Jacquemain D.
    • Nuclear Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.163-174
    • /
    • 2006
  • The $Ph{\acute{e}}bus$ FP project is an international reactor safety project. Its main objective is to study the release, transport and retention of fission products in a severe accident of a light water reactor (LWR). The FPT4 test was performed with a fuel debris bed geometry, to look at late phase core degradation and the releases of low volatile fission products and actinides. Post Test Analyses results indicate that releases of noble gases (Xe, Kr) and high-volatile fission products (Cs, I) were nearly complete and comparable to those obtained during $Ph{\acute{e}}bus$ tests performed with a fuel bundle geometry (FPT1, FPT2). Volatile fission products such as Mo, Te, Rb, Sb were released significantly as in previous tests. Ba integral release was greater than that observed during FPT1. Release of Ru was comparable to that observed during FPT1 and FPT2. As in other $Ph{\acute{e}}bus$ tests, the Ru distribution suggests Ru volatilization followed by fast redeposition in the fuelled section. The similar release fraction for all lanthanides and fuel elements suggests the released fuel particles deposited onto the plenum surfaces. A blockage by molten material induced a steam by-pass which may explain some of the low releases. The revaporisation testing under different atmospheres (pure steam, $H_2/N_2$ and steam /$H_2$) and up to $1000^{\circ}C$ was performed on samples from the first upper plenum. These showed high releases of Cs for all the atmospheres tested. However, different kinetics of revaporisation were observed depending on the gas composition and temperature. Besides Cs, significant revaporisations of other elements were observed: e.g. Ag under reducing conditions, Cd and Sn in steam-containing atmospheres. Revaporisation of small amounts of fuel was also observed in pure steam atmosphere.